
Dynamic Processor
Allocation for Adaptively
Parallel Jobs

What is the problem?

[kunal@ygg ~]$./strassen --nproc 4

[sidsen@ygg ~]$./nfib--nproc 32

[bradley@ygg ~]$./nfib --nproc 16

Allocate the processors fairly and efficiently

Why so Dynamic Scheduling?

Considers all the jobs in the system.
Programmer doesn’t have to specify the
number of processors.

Parallelism can change during execution.
[kunal@ygg ~]$./strassen --nproc 4[kunal@ygg ~]$./strassen

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time

Pa
ra

lle
lis

m

Allocation vs. Scheduling

P1 P2 P3 P5P4 ……P6 Pk

Operating System

Job 1 Job 2 Job n

…

Terminology

The parallelism of a job is dynamic
adaptively parallel jobs—jobs for which the number of
processors that can be used without waste varies
during execution.

At any given time, each job j has a
desire—the maximum number of efficiently usable
processors, or the parallelism of the job (dj).
allocation—the number of processors allotted to the
job (aj).

Terminology

We want to allocate processors to jobs in a way
that is

fair—whenever a job receives fewer processors than
it desires, all other jobs receive at most one more
processor than this job received.

aj < dj ⇒ (aj + 1) is a max
efficient—no job receives more processors than it
desires, and we use as many processors as possible.

∀j aj ≤ dj

∃j aj < dj ⇒ there are no free processors

Overall Goal

Design and implement a fair and efficient
dynamic processor allocation system for

adaptively parallel jobs.

Example: Fair and Efficient Allocation

Job 1 Job 2 Job 3

Job 6Job 4 Job 5

Assumptions
All jobs are Cilk jobs.
Jobs can enter and leave the system at will.
All jobs are mutually trusting, in that they will

stay within the bounds of their allocations.
communicate their desires honestly.

Each job has at least one processor.
Jobs have some amount of time to reach their allocations.

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time

Pa
ra

lle
lis

m

High-Level Sequence of Events

Processor
Allocation System

Job 1

… …

Job N

1. Estimate desire
5. Adjust allocation
(add/remove
processors)

3. Recalculate allocations2. Report
current desire

4. Get allocation

Main Algorithms

Processor
Allocation System

Job j
1. …

2. …

3. …

4. …

5. …

(1, 2) Dynamically estimate the current
desire of a job.

Steal rate (Bin Song)
Number of threads in ready deque

(3) Dynamically determine the allotment
for each job such that the resulting
allocation is fair and efficient.

SRLBA algorithm (Bin Song)
Global allocation algorithm

(4, 5) Converge to the granted allocation
by increasing/decreasing number of
processors in use.

While work-stealing?
Periodically by a background thread?

Desire Estimation
(1) Estimate processor desire dj:
add up the number of threads in
the ready deques of each
processor and divide by a
constant.

+ + +

H
H

H

H

T T T T

k > 3

Processor
Allocation System

Job j
1. …

2. …

(2) Report the desire to the
processor allocation system.

Adjusting the Allocation
(4) Get the allocation anew.

(5) Adjust the allocation.
If anew < aold, remove (aold – anew)
processors
If anew > aold, add (anew – aold)
processors

Processor
Allocation System

Job j
1. …

3. …

4. …

5. …

2. …

Implementation Details

Adding up the number of threads in the ready
deques

While work-stealing
Periodically by a background thread

Removing processors
While work-stealing
Periodically by a background thread

Adding processors
While work-stealing
Periodically by a background thread

Too late!

Complicated

Bad idea

Processor Allocation

Start-up

Desire=4

Alloc=

Job 1 Job 2

Desire=6

Alloc=

Job 3

Desire=5

Alloc=

Job 4

Desire=5

Alloc=4 00 6 50 05 214 4 4

Free
Processors

1612610

Processor Allocation

Job 2 decreases desire.

Desire=4

Alloc=4

Job 1 Job 2

Desire=6

Alloc=4

Job 3

Desire=5

Alloc=4

Job 4

Desire=5

Alloc=4

4

Free
Processors

0

No Reallocation !!

Processor Allocation

Job 1 decreases desire.

Desire=4

Alloc=4

Job 1 Job 2

Desire=6

Alloc=4

Job 3

Desire=5

Alloc=4

Job 4

Desire=5

Alloc=4

2

552

Free
Processors

0210

Reallocate !!

Processor Allocation

Job 2 Increases desire.

Desire=2

Alloc=2

Job 1 Job 2

Desire=6

Alloc=5

Job 3

Desire=5

Alloc=5

Job 4

Desire=5

Alloc=4

8

Free
Processors

0

No Reallocation !!

Processor Allocation

Job 1 Increases desire.

Free
Processors

0

Desire=2

Alloc=2

Job 1 Job 2

Desire=8

Alloc=5

Job 3

Desire=5

Alloc=5

Job 4

Desire=5

Alloc=4

Reallocate !!

5

4434

Implementation Details

When desire of job j decreases: if (new_desire<alloc)
take processors from j and give to jobs having min_depr_alloc.

Job Id:1
Desire:6
Alloc:4

Job Id:2
Desire:2
Alloc:2

Job Id:3
Desire:7
Alloc:5

min_depr_alloc:4
max_alloc:5

Processor Allocation
mda=4

ma=45

Job 1 decreases desire.

Desire=4

Alloc=4

Job 1 Job 2

Desire=6

Alloc=4

Job 3

Desire=5

Alloc=4

Job 4

Desire=5

Alloc=4

2

552

Free
Processors

0210

Implementation

When desire of job j decreases: if (new_desire<alloc)
take processors from j and give to jobs having min_depr_alloc.

When desire of job j increases: if (alloc<mda)
take processors from jobs having max_alloc and give them to j
until j reaches min_depr_alloc or new_desire.

Job Id:1
Desire:6
Alloc:4

Job Id:2
Desire:2
Alloc:2

Job Id:3
Desire:7
Alloc:5

min_depr_alloc:4
max_alloc:5

Processor Allocation

Job 1 Increases desire.

Free
Processors

0

Desire=2

Alloc=2

Job 1 Job 2

Desire=8

Alloc=5

Job 3

Desire=5

Alloc=5

Job 4

Desire=5

Alloc=4

5

4434

mda=4

ma=45

Experiments

Correctness: Does it work?

Effectiveness: Are there cases where it is
better than the static allocation?

Responsiveness: How long does it take
the jobs to reach their allocation?

Conclusions

The desire estimation and processor
allocation algorithms are simple and easy
to implement.
We’ll see how well they do in practice
once we’ve performed the experiments.
There are many ways of improving the
algorithms and in many cases it is not
clear what we should do.

Job Tasks (Extensions)

Incorporate heuristics on steal-
rate (Bin Song’s idea).
Remove processors in the
background thread, not while
work stealing.

Need a mechanism for putting
processors with pending work to
sleep
When adding processors, wake
up processors with pending work
first

Processor
Allocation System

Job j
1. …

2. … 4. …

5. …

Processor Allocation System
(Extensions)

Use a sorted data structure for
job entries.

Sort by desires
Sort by allocations
Group jobs:

Desires satisfied (aj = dj)
Minimum deprived allocation (aj =
min_depr_alloc)
Maximum allocation (aj = max_alloc)

Need fast inserts/deletes and
fast sequential walk.

Processor
Allocation System

Job j

3. …

Processor Allocation System
(Extensions)

Rethink definitions of fairness and efficiency.
Incorporate histories of processor usage for each job
Implement a mechanism for assigning different
priorities to users or jobs

Move the processor allocation system into the
kernel.

Jobs still report desires since they know best
How to group the jobs?

Make classes of jobs (Cilk, Emacs, etc.)
Group by user (sidsen, kunal, etc.)

Questions?

	Dynamic Processor Allocation for Adaptively Parallel Jobs
	What is the problem?
	Why so Dynamic Scheduling?
	Allocation vs. Scheduling
	Terminology
	Terminology
	Overall Goal
	Example: Fair and Efficient Allocation
	Assumptions
	High-Level Sequence of Events
	Main Algorithms
	Desire Estimation
	Adjusting the Allocation
	Implementation Details
	Processor Allocation
	Processor Allocation
	Processor Allocation
	Processor Allocation
	Processor Allocation
	Implementation Details
	Processor Allocation
	Implementation
	Processor Allocation
	Experiments
	Conclusions
	Job Tasks (Extensions)
	Processor Allocation System (Extensions)
	Processor Allocation System (Extensions)
	Questions?

