6.895 Theory of Parallel Systems Project Proposal
A Space-Efficient Global Scheduler for Cilk

We propose to implement a scheduler for Cilk based on the work presented in Space-Efficient Scheduling
of Nested Parallelism by Narlikar and Blelloch [3]. We will begin by implementing the serial AsyncDF
scheduler for Cilk and comparing its performance with the randomized work-stealing scheduler. We will
then experiment with different methods for grouping threads for locality with the Cilk syntax. Next we
will implement the parallel AsyncDF scheduler and compare its performance with both the serial AsyncDF
scheduler and the randomized work-stealing Cilk scheduler. Finally, we will experiment with optimizations
to the AysncDF implementation and with other techniques to improve resource utilization in Cilk.

The AsyncDF thread-scheduling algorithm is a deterministic provably good (space and time efficient)
global parallel scheduling algorithm. Threads tend to allocate a large chunk of memory, perform some
computation, and then free the memory. The principal behind AsyncDF is that you get better performance
by exploiting parallelism inside the computation portion of the code rather than in code that allocates large
amounts of memory. When a thread tries to allocate a large amount of memory, it should be put to sleep
until other threads that do not allocate large blocks of memory are exhausted. In other words, the AsyncDF
is a P wide depth first search of the computation DAG.

AsyncDF contrasts with the Cilk scheduler both in terms of time and space bounds and in terms of
how strongly those bounds are guaranteed. The theoretical performance bounds for AsyncDF are better
than Cilk’s randomized work-stealing scheduler. AsyncDF is deterministic and its performance bounds
are therefore guaranteed. The authors of the AsyncDF algorithm also claim that AsyncDF outperforms
Cilk in practice. The “drawback” of AsyncDF is that the algorithm has a tunable parameter that allows
the scheduler to make a tradeoff between time and space efficiency. AsyncDF also requires a non-trivial
algorithm to “group” threads together to exploit locality.

We will begin our project by implementing the serial (simplest) version of the AsyncDF scheduler and
integrating it with the Cilk compiler. We will also experiment with algorithms for grouping threads into
blocks that should be run on the same processor to exploit locality. We will implement the tunable parameter
to AsyncDF as a parameter to the Cilk compiler.

Next we will begin our performance analysis of AsyncDF in Cilk. Narlikar et al claim that serial AsyncDF
is faster than parallel AsyncDF for machines with 32 or fewer processors so performance results at this
stage are important. We will compare the performance of several parallel algorithms coded in Cilk (i.e.,
recursive matrix multiplication, Strassen multiplication, the fast multipole method for solving the n-body
problem, etc.) using the randomized work-stealing scheduler and AsyncDF. We will also make performance
comparisons over a range of inputs for AsyncDF’s tunable parameter. Narlikar et al claim that AsyncDF
is faster than Cilk’s scheduler based on tests they performed utilizing hand optimized code and a custom
parallel runtime based on pthreads. Our tests will provide a much more honest comparison in that they will
compare AsyncDF to randomized work-stealing with all else being equal.

We will then implement the parallel AsyncDF scheduler in Cilk and repeat our performance comparisons.
We will also compare the performance of the serial and parallel schedulers on different machine architectures.

Finally, we will experiment with improvements to AsyncDF, global schedulers in general, and other
techniques to improve resource utilization in Cilk. We will look for incremental improvements in our AsyncDF
implementation and for improvements in the AsyncDF algorithm. We will also look at other global scheduling
techniques in Cilk. We will take a careful look at methods to introduce memory saving techniques into the
original Cilk scheduler. Finally, we will look at extensions to the Cilk syntax to provide cues to the compiler
to help it utilize resources more effectively (for example, in the context of AsyncDF, to help the compiler
group threads for locality).

Our project proposal is safe in that there are enough almost guaranteed results to ensure that we do not
need a sophisticated contingency plan. The AsyncDF algorithm is accessible and integrating it with Cilk is

0-1



straight forward. Performance comparisons are straightforward and useful. However, our project still has
plenty of avenues for novel research should they prove to be fruitful during the course of the semester.

References

[1] Robert D. Blumofe and Charles E. Leiserson. Space-Efficient Scheduling of Multithreaded Computations.
25th Annual ACM Symposium on the Theory of Computing (STOC ’98), May 16-18 1993, San Diego,
California, pp. 362-371.

[2] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The Implementation of the Cilk-5 Multi-
threaded Language. 1998 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), Montreal, Canada, June 1998.

[3] Girija J. Narlikar and Guy E. Blelloch. Space-Efficient Implementations of Nested Parallelism. ACM
Transactions on Programming Languages and Systems (TOPLAS), 21(1), January 1999.

[4] Supercomputing Technology Group, Massachusetts Institute of Technology. Cilk 5.3.2 Reference Manual,
November 2001. Available on the World Wide Web at URL “http://supertech.lcs.mit.edu/cilk”.



