
6.895 Term Project Proposal

Zardosht Kasheff

October 8, 2003

Proposal: Parallelizing METIS

I plan to design and implement a parallelized version of the graph partitioning algorithm,
METIS, using CILK.

Description of METIS

Graph Partitioning. Consider a graph G with vertices V and edges E. Vertices and
edges can have weights associated with them. A partition of size n divides the vertices
into n disjoint subsets. The edge cut is the number of edges whose vertices lie in different
subsets. METIS aims to find a low edge-cut.

Algorithm. METIS performs in three stages: coarsening, partitioning, and refinement.

Coarsening. The original graph, G0, is transformed into sequentially smaller graphs
G1, G2, . . . Gn such that |V0| > |V1| > |V2| > . . . > |Vn|. Gn is meant to be a good represen-
tation of G0. Theoretically, a great partitioning of Gn represents a fairly good partitioning
of G0. Coarsening along with refinement constitutes roughly 95% of the serial runtime.

Partitioning. Gn is partitioned. Gn is small enough such that this stage is completed
very quickly. This partitioning constitutes roughly 5% of the serial runtime, thus its details
are unimportant.

Refinement. The partition Pn is projected back onto Pn−1, . . . , P0. After each projec-
tion Pi, the partitioning is refined using a greedy algorithm.

Parallelizing tasks

Coarsening.

The process of coarsening Gi to Gi−1 can be parallelized. Coarsening involves two stages:
matching and creating.

1

Matching. The goal of matching is given Gi−1, define the vertices of Gi. Every vertex
in Gi maps to one or two vertices of Gi−1. The process of matching is to randomly select
pairs of connected vertices in Gi−1 to map to a vertex we create for Gi. If we select connected
vertices j and k to map to a vertex in Gi, we say the vertices j and k are matched . If all
adjacent vertices of vertex j are already matched, we match j with itself.

Each processor picks a vertex v at random and checks if it is unmatched. If so, vertices
adjacent to v are searched until another unmatched vertex is found, and the two are matched.
If no such vertex is found, v is matched with itself. Obvious concurrency issues have been
dealt with and implemented. The process is continues until all vertices are matched.

Creating Gi. Given matched vertices (va, vb) of Gi−1 are mapped to vc of Gi, adjacent
nodes of vc as follows. We iterate through adjacent vertices of va and vb, find their mapped
values in Gi, and define these to be the adjacent vertices of vc. Processors can do subsets of
vertices of Gi independently. No concurrency issues arise.

Initial Partitioning

Due to the small runtime of this portion, this task will not be parallelized.

Projection and Refinement.

For all vertices of Gi, if matched vertices (va, vb) of Gi map to vc of Gi+1, and vc belongs to
subset j of Pi+1, then va and vb initially belong to subset j of Pi. This defines a projection .
This can be done in parallel with no concurrency issues because no data is modified. Data
is only written.

Refinement involves iteratively attempting to move each vertex from its current subset
to another subset if and only if the move results in a decrease in the edge cut. Attempts are
made until no possible movements result in a decrease in edge-cut. Processors can attempt
to move vertices in parallel, but concurrency issues arise.

No parallelization has been implemented as of yet.

Tasks for Project

Tasks Completed

1. Designed, implemented and tested parallelized coarsening.

2. Designed initial version of parallelized refinement.

Tasks Remaining

1. Obtain speedup for parallelized coarsening.

Currently, although logically sound, coarsening does not demonstrate any speedup
on more processors. The reason is that currently data cannot be written in parallel.

2

METIS is mostly a comparison based algorithm. The majority of computation is
memory operations. For instance, creating Gi mentioned above involves writing data
to a large array. Unfortunately, I have been unable to scale algorithms composed of
only memory operations. Take the following piece of cilk code:

cilk void fill(int *array, int val, int len){

if(len <= (1<<18)){

memset(array, val, len*4);

} else {

spawn fill(array, val, len/2);

spawn fill(array+len/2, val, len-len/2);

sync;

}

}

enum { N = 200000000 };

int main(int argc, char *argv[]){

int *x;

x = (int *)malloc(N*sizeof(int));

spawn fill(x, 25, N);

}

This code fills an array in parallel, yet shows practically no speedup in runtime when
run on multiple processors. If this code can be parallelized, then coarsening can as
well. The reason is almost certainly in the data placement resulting in malloc. That
is, all the data is located close to one processor. Other processors trying to access the
data is causing a bottleneck. This task is currently being worked on.

2.	 Implement, test, and most likely redesign parallelized refinement.

The algorithm is non-trivial because many concurrency issues arise. Moving two ad-
jacent vertices concurrently may result in an increase in edge cut, even if moving only
one would result in a decrease. A naive solution would be to lock all adjacent vertices
when attempting to move a given vertex. This results in a large locking overhead. A

better solution shall be investigated once the task above is completed.

Also, much space is accessed and allocated sequentially. Devising a way to not have

to allocate all memory sequentially so that processors can write to memory in paral-
lel, while causing only a small increase in total runtime of the serial algorithm, is a
challenge.

Scope and Backup.

Rectifying the first task has been challenging, perhaps because of my inexperience with
systems. I believe the problem can be solved soon, but I cannot be sure. As a backup, I

3

know I can have the second task completed by the end of the term. At worst, and this is if
all else fails, I will implement a naive parallelization of refinement.

Papers Read.

1. George Karypis and Vipin Kumar.	 A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs. March 1998.

2. George Karypis and Vipin Kumar. Multilevel k-way Partitioning Scheme for Irregular
Graphs. March 1998.

3. George Karypis and Vipin Kumar.	 Parallel Multilevel k-way Partitioning Scheme for
Irregular Graphs. March 1998.

4. Jeffrey S. Gibson. Memory Profiling on Shared Memory Multiprocessors. July 2003.

4

