
Cilk 5.3.2

Reference Manual

Supercomputing Technologies Group
MIT Laboratory for Computer Science

http://supertech.lcs.mit.edu/cilk

9 November 2001

Cilk is a trademark of the Massachusetts Institute of Technology.

The Cilk project is supported in part by NSF Grant E1A­9975036. Previous support was provided in part

by DARPA Grant F30602­97­1­0270.

This manual is Copyright � 1998 Massachusetts Institute of Technology.
c

Release Notes

Cilk­5.3.2

•	 Support for MacOS X.
•	 Fixed memory leak in runtime system.
•	 cilk2c: accept C9X flexible arrays.

Cilk­5.3.1

•	 Patched the use the unofficial gcc­2.96 that comes with redhat­7.0.
•	 cilk2c: stricter typechecking for inlet calls. Do not apply usual call conversions.
•	 Added support for libhoard.
•	 cilk2c: fixed bug regarding function redeclarations.

Cilk­5.3

Cilk is now released under the GNU General Public License. •
•	 The “cilk” command now automates all stages of compilation and linking. Use cilk ­O2
hello.cilk ­o hello to compile a simple program.

•	 Improved Linux support. cilk2c can now parse all Linux/glibc­2 include files.
•	 INCOMPATIBLE CHANGE: header file cilk­compat.h is no longer required and it is not

provided.
•	 Fixed many bugs in cilk2c.
•	 Cilk now always runs on top of POSIX threads. The Cilk­5.2 distinction between threaded

and process version has disappeared.
•	 The GNU linker is no longer required. Cilk should run on any system that supports gcc,

GNU make, and POSIX threads.

Web page

The Cilk distribution, FAQ and further documentation are available at the Cilk web page:

http://supertech.lcs.mit.edu/cilk

i

ii

Support

Please send questions and comments to

cilk­support@lists.sourceforge.net

Mailing lists

If you use Cilk, you may wish to be on the cilk­users mailing list. To join the cilk­users mailing
list, look for the cilk project at http://www.sourceforge.net

To send email directly to the cilk­users mailing list, use

cilk­users@lists.sourceforge.net

Contents

Release Notes i

1 Introduction 1

1.1 What is included in Cilk 5.3.2? . 1

1.2 Background and goals . 1

1.3 About this manual . 3

2 Programming in Cilk 4

2.1 The Cilk language . 4

2.2 Compiling and running Cilk programs . 7

2.3 Cilk and C . 8

2.4 Storage allocation . 9

2.4.1 Stack memory . 9

2.4.2 Heap memory . 10

2.5 Shared memory . 10

2.6 Locking . 13

2.7 Advanced features . 13

2.7.1 Inlets . 13

2.7.2 Aborting work . 15

2.7.3 Interacting with Cilk’s scheduler . 17

2.8 The Cilk model of multithreaded computation . 18

2.9 How to measure performance . 20

3 Language Reference 23

3.1 Program structure . 23

3.2 Keywords . 23

3.3 Procedure definition and declaration . 24

3.4 Spawning . 24

3.5 Returning values . 25

3.6 Synchronization . 25

3.7 Inlet definition . 26

3.8 Inlet invocation . 26

3.9 Aborting . 27

3.10 Cilk scheduler variables . 27

iii

iv CONTENTS

4 Specification of Cilk Libraries 28

4.1 Global variables . 28

4.2 Shared memory support . 28

4.3 Debug support . 29

4.4 Locks . 29

4.5 Timers . 30

5 How Cilk Works 32

5.1 Nanoscheduling . 32

5.2 Microscheduling . 34

5.3 Overheads . 36

5.4 Interactions with weak memory models . 36

A People 37

B Copyright and Disclaimers 39

Chapter 1

Introduction

This document describes Cilk 5.3.2, a language for multithreaded parallel programming based on
ANSI C. Cilk is designed for general­purpose parallel programming, but is especially effective
for exploiting dynamic, highly asynchronous parallelism, which can be difficult to write in data­
parallel or message­passing style. Three world­class chess programs, �Tech [19], �Socrates [18], and
Cilkchess, were written in Cilk by the Cilk group at MIT. Cilk provides an effective platform for
programming dense and sparse numerical algorithms, such as matrix factorization [4] and N ­body
simulations. Unlike many other multithreaded programming systems, Cilk is algorithmic, in that
the runtime system employs a scheduler that allows the performance of programs to be estimated
accurately [5] based on abstract complexity measures.

1.1 What is included in Cilk 5.3.2?

This release of Cilk, which is available from http://supertech.lcs.mit.edu/cilk, includes the
Cilk runtime system, the Cilk compiler, a collection of example programs, and this manual.

This version of Cilk is intended to run on Unix­like systems that support POSIX threads. In par­
ticular, Cilk runs on GNU systems on top of the Linux kernel, and it integrates nicely with the Linux
development tools. Cilk 5.3.2 works on Linux/386, Linux/Alpha, Linux/IA­64, Solaris/SPARC,
Irix/MIPS, and OSF/Alpha. Cilk should also run on other systems, provided that gcc, POSIX
threads, and GNU make are available. If you would like help in porting Cilk to a new platform, please
contact the Cilk developers by sending electronic mail to cilk­support@lists.sourceforge.net.

1.2 Background and goals

Cilk is an algorithmic multithreaded language. The philosophy behind Cilk is that a programmer
should concentrate on structuring the program to expose parallelism and exploit locality, leaving
the runtime system with the responsibility of scheduling the computation to run efficiently on a
given platform. Thus, the Cilk runtime system takes care of details like load balancing, paging,
and communication protocols. Unlike other multithreaded languages, however, Cilk is algorithmic
in that the runtime system guarantees efficient and predictable performance.

Cilk grew out of work in both theory and implementation. The theoretical input to Cilk
comes from a study of scheduling multithreaded computations, and especially of the performance

1

2 CHAPTER 1. INTRODUCTION

of work­stealing, which provided a scheduling model that has since been the central theme of
Cilk development. These results led to the development of a performance model that accurately
predicts the efficiency of a Cilk program using two simple parameters: work and critical­path
length [5, 7, 2]. More recent research has included page faults as a measure of locality [3, 4, 17].

The first implementation of Cilk was a direct descendent of PCM/Threaded­C, a C­based
package which provided continuation­passing­style threads on Thinking Machines Corporation’s
Connection Machine Model CM­5 Supercomputer [20] and which used work­stealing as a general
scheduling policy to improve the load balance and locality of the computation [14]. With the
addition of a provably good scheduler and the incorporation of many other parallel programming
features, the system was rechristened “Cilk­1.” Among the versions of Cilk­1, notable was an
adaptively parallel and fault­tolerant network­of­workstations implementation, called Cilk­NOW [2,
8].

The next release, Cilk­2, featured full typechecking, supported all of ANSI C in its C­language
subset, and offered call­return semantics for writing multithreaded procedures. The runtime system
was made more portable, and the base release included support for several architectures other than
the CM­5.

Cilk­3 featured an implementation of dag­consistent distributed shared memory [4, 17]. With
this addition of shared memory, Cilk could be applied to solve a much wider class of applications.
Dag­consistency is a weak but nonetheless useful consistency model, and its relaxed semantics
allows for an efficient, low overhead, software implementation.

In Cilk­4, the authors of Cilk changed their primary development platform from the CM­5 to the
Sun Microsystems SPARC SMP. The compiler and runtime system were completely reimplemented,
eliminating continuation passing as the basis of the scheduler, and instead embedding scheduling
decisions directly into the compiled code. The overhead to spawn a parallel thread in Cilk­4 was
typically less than 3 times the cost of an ordinary C procedure call, so Cilk­4 programs “scaled
down” to run on one processor with nearly the efficiency of analogous C programs.

In Cilk­5, the runtime system was rewritten to be more flexible and portable than in Cilk­4.
Cilk­5.0 could use operating system threads as well as processes to implement the individual Cilk
“workers” that schedule Cilk threads. The Cilk­5.2 release included a debugging tool called the
Nondeterminator [12, 9], which can help Cilk programmers to localize data­race bugs in their code.
(The Nondeterminator is not included in the present Cilk­5.3 release.) With the current Cilk­5.3
release, Cilk is no longer a research prototype, but it attempts to be a real­world tool that can
be used by programmers who are not necessarily parallel­processing experts. Cilk­5.3 is integrated
with the gcc compiler, and the runtime system runs identically on all platforms. Many bugs in the
Cilk compiler were fixed, and the runtime system has been simplified.

To date, prototype applications developed in Cilk include graphics rendering (ray tracing and
radiosity), protein folding [24], backtracking search, N ­body simulation, and dense and sparse ma­
trix computations. Our largest application effort so far is a series of chess programs. One of our
programs, �Socrates [18], finished second place in the 1995 ICCA World Computer Chess Cham­
pionship in Hong Kong running on the 1824­node Intel Paragon at Sandia National Laboratories
in New Mexico. Our most recent program, Cilkchess, is the 1996 Open Dutch Computer Chess
Champion, winning with 10 out of a possible 11 points. Cilkchess ran on a 12 processor 167 MHz
UltraSPARC Enterprise 5000 Sun SMP with 1 GB of memory. The MIT Cilk team won First
Prize, undefeated in all matches, in the ICFP’98 Programming Contest sponsored by the 1998

1.3. ABOUT THIS MANUAL 3

International Conference on Functional Programming.2 We hope that by making Cilk available
on the new generation of SMP’s, other researchers will extend the range of problems that can be
efficiently programmed in Cilk.

The four MIT Ph.D. theses [2, 17, 25, 13] contain more detailed descriptions of the foundation
and history of Cilk. In addition, the minicourse [21], which was held as part of MIT’s 6.046 Intro­
duction to Algorithms class during Spring 1998, provides a good introduction to the programming
of multithreaded algorithms using a Cilk­like style.

1.3 About this manual

This manual is primarily intended for users who wish to write Cilk application programs. It also
comprises information about implementation issues that can be useful when porting Cilk to a new
system.

The manual is structured as follows. Chapter 2 is the programmer’s guide, which introduces the
features of the Cilk language. Chapter 3 contains the Cilk language reference manual. Chapter 4
contains the Cilk library reference manual. Chapter 5 describes internals of the Cilk 5.3.2 runtime
system and compiler. This chapter should be useful if you are interested in Cilk internals or if you
want to port Cilk to another platform.

Cilk is not a functional language, but the contest was open to entries in any programming language. 2

Chapter 2

Programming in Cilk

This chapter introduces the Cilk language to programmers who are already reasonably familiar
with C. Section 2.1 introduces the Cilk language through the example of computing Fibonacci
numbers. Section 2.2 steps through the process of writing, compiling, and running simple Cilk
programs. Section 2.3 describes how Cilk and C interact. Section 2.4 discusses storage allocation.
Section 2.5 discusses shared memory. Section 2.6 describes the locking primitives that Cilk pro­
vides for atomicity. Section 2.7 treats some of Cilk’s more advanced language features, including
constructs for aborting already­spawned work and how to call Cilk procedures as library functions
from C. Finally, Section 2.8 describes the computational model supported by Cilk’s scheduler, and
Section 2.9 describes Cilk’s facilities for measuring performance.

Additional material on multithreaded programming using a Cilk­like model can be found in the
minicourse notes [21]. The minicourse focuses on how recursive multithreaded algorithms can be
designed and analyzed.

2.1 The Cilk language

Cilk is an algorithmic multithreaded language. The philosophy behind Cilk is that a programmer
should concentrate on structuring his program to expose parallelism and exploit locality, leaving
the runtime system with the responsibility of scheduling the computation to run efficiently on the
given platform. Cilk’s runtime system takes care of details like load balancing and communication
protocols. Unlike other multithreaded languages, however, Cilk is algorithmic in that the runtime
system’s scheduler guarantees provably efficient and predictable performance.

The basic Cilk language is simple. It consists of C with the addition of three keywords to
indicate parallelism and synchronization. A Cilk program, when run on one processor, has the
same semantics as the C program that results when the Cilk keywords are deleted. We call this C
program the serial elison or C elision of the Cilk program. Cilk extends the semantics C in a
natural way for parallel execution.

One of the simplest examples of a Cilk program is a recursive program to compute the nth
Fibonacci number. A C program to compute the nth Fibonacci number is shown in Figure 2.1(a),
and Figure 2.1(b) shows a Cilk program that does the same computation in parallel.1 Notice how

1This program is a terrible way to compute Fibonacci numbers, since it runs in exponential time while logarithmic­
time methods are known [10, page 850].

4

5 2.1. THE CILK LANGUAGE

#include <stdlib.h>
#include <stdio.h>
#include <cilk.h>

#include <stdlib.h>

#include <stdio.h>

cilk int fib (int n)
{

int fib (int n)
if (n<2) return n;

{
else

if (n<2) return (n);
{

else
int x, y;

{

int x, y;

x = spawn fib (n­1);
y = spawn fib (n­2);

x = fib (n­1);
y = fib (n­2);

sync;

return (x+y);
return (x+y);

}
}

}
}

int main (int argc, char *argv[])
cilk int main (int argc, char *argv[])

{
{

int n, result;
int n, result;

n = atoi(argv[1]);
n = atoi(argv[1]);

result = fib (n);
result = spawn fib(n);

printf ("Result: %d\n", result);
sync;

return 0;

}

printf ("Result: %d\n", result);
return 0;

(a)
}

(b)

Figure 2.1: (a) A serial C program to compute the nth Fibonacci number. (b) A parallel Cilk program to
compute the nth Fibonacci number.

similar the two programs look. In fact, the only differences between them are the inclusion of the
library header file cilk.h and a few keywords: cilk, spawn, and sync.

The keyword cilk identifies a Cilk procedure , which is the parallel version of a C function.
A Cilk procedure may spawn subprocedures in parallel and synchronize upon their completion. A
Cilk procedure definition is identified by the keyword cilk and has an argument list and body just
like a C function.

Most of the work in a Cilk procedure is executed serially, just like C, but parallelism is created
when the invocation of a Cilk procedure is immediately preceded by the keyword spawn. A spawn
is the parallel analog of a C function call, and like a C function call, when a Cilk procedure is
spawned, execution proceeds to the child. Unlike a C function call, however, where the parent is
not resumed until after its child returns, in the case of a Cilk spawn, the parent can continue to
execute in parallel with the child. Indeed, the parent can continue to spawn off children, producing
a high degree of parallelism. Cilk’s scheduler takes the responsibility of scheduling the spawned
procedures on the processors of the parallel computer.

6 CHAPTER 2. PROGRAMMING IN CILK

Figure 2.2: The Cilk model of multithreaded computation. Each procedure, shown as a rounded rectangle,
is broken into sequences of threads, shown as circles. A downward edge indicates the spawning of a subpro­
cedure. A horizontal edge indicates the continuation to a successor thread. An upward edge indicates the
returning of a value to a parent procedure. All three types of edges are dependencies which constrain the
order in which threads may be scheduled.

A Cilk procedure cannot safely use the return values of the children it has spawned until it
executes a sync statement. If all of its children have not completed when it executes a sync,
the procedure suspends and does not resume until all of its children have completed. The sync
statement is a local “barrier,” not a global one as, for example, is sometimes used in message­
passing programming. In Cilk, a sync waits only for the spawned children of the procedure to
complete, and not for all procedures currently executing. When all its children return, execution
of the procedure resumes at the point immediately following the sync statement. In the Fibonacci
example, a sync statement is required before the statement return (x+y), to avoid the anomaly
that would occur if x and y were summed before each had been computed. A Cilk programmer
uses spawn and sync keywords to expose the parallelism in a program, and the Cilk runtime system
takes the responsibility of scheduling the procedures efficiently.

As an aid to programmers, Cilk inserts an implicit sync before every return, if it is not present
already. As a consequence, a procedure never terminates while it has outstanding children.

The main procedure must be named main, as in C. Unlike C, however, Cilk insists that the
return type of main be int. Since the main procedure must also be a Cilk procedure, it must be
defined with the cilk keyword.

It is sometimes helpful to visualize a Cilk program execution as a directed acyclic graph, or dag ,
2as is illustrated in Figure 2.2. A Cilk program execution consists of a collection of procedures,

each of which is broken into a sequence of nonblocking threads . In Cilk terminology, a thread
is a maximal sequence of instructions that ends with a spawn, sync, or return (either explicit
or implicit) statement. (The evaluation of arguments to these statements is considered part of
the thread preceding the statement.) The first thread that executes when a procedure is called is
the procedure’s initial thread , and the subsequent threads are successor threads. At runtime,
the binary “spawn” relation causes procedure instances to be structured as a rooted tree, and the
dependencies among their threads form a dag embedded in this spawn tree

A correct execution of a Cilk program must obey all the dependencies in the dag, since a thread
cannot be executed until all the threads on which it depends have completed. We shall discuss
properties of the Cilk scheduler in Section 2.8.

2Technically, procedure instances.

2.2. COMPILING AND RUNNING CILK PROGRAMS 7

2.2 Compiling and running Cilk programs

In order to compile Cilk programs, Cilk 5.3.2 installs the cilk command, which is a special version
of the gcc compiler. The cilk command understands that files with the .cilk extension are Cilk
programs and acts accordingly.

cilk accepts the same arguments as the gcc compiler. For example, the source code for the
Fibonacci example from Figure 2.1(b) can be found under the name fib.cilk in the examples
directory of the Cilk distribution. After installing the distribution, you can type the command

$ cilk ­O2 fib.cilk ­o fib

to produce the fib executable. (You can also use your favorite gcc options, such as ­g, ­Wall,
and so on.) To run the program, type:

> fib ­­nproc 4 30

this starts fib on 4 processors to compute the 30th Fibonacci number. At the end of the execution,
you should see a printout similar to the following:

Result: 832040

During program development, it is useful to collect performance data of a Cilk program.
The Cilk runtime system collects this information when a program is compiled with the flags
­cilk­profile and ­cilk­critical­path.

$ cilk ­cilk­profile ­cilk­critical­path ­O2 fib.cilk ­o fib

The flag ­cilk­profile instructs Cilk to collect data about how much time each processor
spends working, how many thread migrations occur, how much memory is allocated, etc. The
flag ­cilk­critical­path enables measurement of the critical path. (The critical path is the
ideal execution time of your program on an infinite number of processors. For a precise defini­
tion of the critical path, see Section 2.8.) We distinguish the ­cilk­critical­path option from
­cilk­profile because critical­path measurement involves many calls to the timing routines, and
it may slow down programs significantly. In contrast, ­cilk­profile still provides useful profiling
information without too much overhead.

Cilk program compiled with profiling support can be instructed to print performance informa­
tion by using the ­­stats option. The command line

> fib ­­nproc 4 ­­stats 1 30

yields an output similar to the following:

Result: 832040

RUNTIME SYSTEM STATISTICS:

Wall­clock running time on 4 processors: 2.593270 s
Total work = 10.341069 s
Total work (accumulated) = 7.746886 s
Critical path = 779.588000 us
Parallelism = 9937.154003

8 CHAPTER 2. PROGRAMMING IN CILK

After the output of the program itself, the runtime system reports several useful statistics
collected during execution. Additional statistics can be obtained by setting the statistics level
higher than 1.3 The parallelism, which is the ratio of total work to critical­path length, is also
printed so that you can gauge the scalability of your application. If you run an application on
many fewer processors than the parallelism, then you should expect linear speedup.

The Cilk runtime system accepts the following standard options, which must be specified first
on a Cilk program’s command line:

­­help List available options.

­­nproc n Use n processors in the computation. If n = 0, use as many processors as are available.
The parameter n must be at least 0 and be no greater than the machine size. The default is
to use 1 processor.

­­stats l Set statistic level to l. The higher the level, the more detailed the information. The
default level is 0, which disables any printing of statistics. Level 1 prints the wall­clock
running time, the total work, and the critical­path length. The exact set of statistics printed
depends on the flags with which the runtime system and the application were compiled. The
highest meaningful statistics level is currently 6.

­­no­stats Equivalent to ­stats 0.

­­stack size Set a maximum frame stack size of size entries. The frame stack size limits the depth
of recursion allowed in the program. The default depth is 32768.

­­ Force Cilk option parsing to stop. Subsequent options will be passed to the Cilk program
unaltered.

These options must be specified before all user options, since they are processed by the Cilk
runtime system and stripped away before the rest of the user options are passed to main.

Figure 2.3 illustrates the process by which a Cilk program is compiled. Cilk program files, which
end with .cilk by convention, are first transformed to ordinary C code by the Cilk type­checking
preprocessor cilk2c, producing .c files. The C code is then compiled using the gcc compiler and
linked with the Cilk runtime system. You do not need to worry about this compilation process,
though, since the cilk command takes care of everything.

2.3 Cilk and C

Cilk uses a source­to­source compiler, including a type­checking preprocessor that translates Cilk
code into C code. You can incorporate C functions into Cilk code, but there are certain restrictions
on how Cilk and C can interact.

The most basic rule governing Cilk and C is the following. Although it is permissible for a Cilk
procedure to invoke a C function, C functions may not call or spawn Cilk procedures.

Thread­safe functions from system libraries also work when called from Cilk. The exact set
of thread­safe functions is system dependent, but POSIX threads are now commmon enough that

3If critical path timing is turned on, the total work is measured in two different ways. The second, shown as Total
work (accumulated), is more accurate as it tries to compensate for the running time of the timer calls themselves.

9 2.4. STORAGE ALLOCATION

Cilk

?
Runtime System

source­to­source c­compiler linking

-
compiler

fib.cilk fib.c - -
loader

fib.o -fib

cilk2c gcc ld

Figure 2.3: Compiling the Fibonacci program. Cilk code is passed through the cilk2c compiler, a type­
checking preprocessor which generates C output. This output is then compiled with gcc and linked with the
Cilk runtime library.

most libraries work fine with threads. One such library is glibc­2.1, which is installed on most
GNU/Linux systems.

The function alloca is not thread­safe. See Section 4.2 for a description of a thread­safe
replacement called Cilk alloca.

Up to version 5.2, Cilk defined special versions of certain commonly­used functions. For ex­
ample, Cilk­5.2 defined Cilk malloc, which was guaranteed to work on all systems, as opposed
to malloc. Cilk­5.2 provided a header file cilk­compat.h, which defined X to be Cilk X for all
redefined functions X. This cumbersome mechanism is now deprecated, and cilk­compat.h is no
longer supported. Use malloc instead of Cilk malloc.

2.4 Storage allocation

Like the C language on which it is based, Cilk provides two types of memory: stack and heap. Stack
memory is allocated by the compiler for procedure­local variables and arrays, or you can allocate
stack memory with the Cilk alloca() library function available in cilk­lib.h. Stack memory
is automatically deallocated when the Cilk procedure or C function that allocated the memory
returns. Heap memory is allocated by the usual malloc() library function and deallocated with
free().

2.4.1 Stack memory

Cilk uses a cactus stack [23] for stack­allocated storage, such as the storage needed for procedure­
local variables. As shown in Figure 2.4, from the point of view of a single Cilk procedure, a cactus
stack behaves much like an ordinary stack. The procedure can allocate and free memory by pushing
and popping the stack. The procedure views the stack as extending back from its own stack frame to
the frame of its parent and continuing to more distant ancestors. The stack becomes a cactus stack
when multiple procedures execute in parallel, each with its own view of the stack that corresponds
to its call history, as shown in Figure 2.4.

Cactus stacks in Cilk have essentially the same limitations as ordinary C stacks [23]. For in­
stance, a child procedure cannot return to its parent a pointer to an object that it has allocated,
since the object will be deallocated automatically when the child returns. Similarly, sibling proce­
dures cannot reference each other’s local variables. Just as with the C stack, pointers to objects

10 CHAPTER 2. PROGRAMMING IN CILK

A
�

A
�

A
�

A
�

A
�

A
�

B
�

C� D
�

E
�

B
�

C� B
�

B
�

E
�

D
�

A
�

B
�

C�

D
�

E
�

Figure 2.4: A cactus stack. Procedure A spawns B and C, and B spawns D and E. The left part of
the figure shows the spawn tree, and the right part of the figure shows the view of the stack by the five
procedures. (The stack grows downward.)

allocated on the cactus stack can only be safely passed to procedures below the allocation point in
the call tree.

You can allocate size bytes of storage on the stack by calling the C library function Cilk alloca:

ptr = Cilk_alloca(size);

Memory allocated by Cilk alloca is freed when the procedure in which it was called returns.
In the current release, Cilk’s version of Cilk alloca() does not work properly when it is called

from within a C function. Similarly, the C function alloca() does not work properly when called
within a Cilk procedure.

2.4.2 Heap memory

To allocate heap storage, you call

ptr = malloc(size);

which allocates size bytes out of heap storage and returns a pointer to the allocated memory. The
memory is not cleared. Heap storage persists until it is explicitly freed:

free(ptr);

where ptr is a pointer previously returned by a call to malloc(). Unlike storage allocated by
Cilk alloca(), a pointer to storage allocated by malloc() can be safely passed from a child
procedure to its parent.

2.5 Shared memory

Cilk supports shared memory. Sharing occurs when a global variable is accessed by procedures
operating in parallel, but sharing can also arise indirectly from the passing of pointers to spawned
procedures, allowing more than one procedure to access the object addressed by the pointer. (Cilk
supports the same semantics for pointer passing as C. See Section 2.4.) Updating shared objects
in parallel can cause nondeterministic anomalies to arise, however. Consequently, it is important
to understand the basic semantics of Cilk’s shared­memory model.

2.5. SHARED MEMORY 11

cilk int foo (void) cilk int foo (void)

{ {

int x = 0, y; int x = 0;

spawn bar(&x); spawn bar(&x);
y = x + 1; x = x + 1;
sync; sync;
return (y); return (x);

} }

cilk void bar (int *px) cilk void bar (int *px)
{ {
printf("%d", *px + 1); *px = *px + 1;
return; return;

} }

Figure 2.5: Passing the spawned procedure bar an Figure 2.6: Nondeterministic behavior may result
argument consisting of a pointer to the variable x from shared access to the variable x when x is up­
leads to the sharing of x. dated.

Before delving into the semantics of shared memory, let us first see how sharing might occur
in a Cilk program and what anomalies might arise. Figure 2.5 shows two Cilk procedures, foo()
and bar(). In this example, foo() passes variable x to bar() by reference, and then it proceeds to
read x before the sync. 4 Concurrently, bar() reads x through the pointer px. This way of sharing
the value of x is safe, because the shared variable x is assigned in foo() before bar() is spawned,
and no write accesses happen on x thereafter.

Figure 2.6 shows a slightly modified version of the Cilk procedures in Figure 2.5. Here, foo()
passes the variable x to bar() by reference, but now it proceeds to modify x itself before the sync.
Consequently, it is not clear what value bar() will see when it reads x through pointer px: the
value at the time the variables were passed, the value after foo() has modified them, or something
else. Conversely, it is not clear which value of x foo() will see. This situation is called a data
race , and it leads to nondeterministic behavior of the program. In most cases, nondeterminism of
this sort is undesirable and probably represents a programming error.

The easiest way to deal with the anomalies of shared access is simply to avoid writing code in
which one thread modifies a value that might be read or written in parallel by another thread. If
you obey this rule, Cilk’s shared­memory model guarantees that your program will deterministically
produce the same values for all variables, no matter how the threads are scheduled. Determinacy
is a goal to be strived for in parallel programming, although sometimes more parallelism can be
obtained with a nondeterministic algorithm.

In some circumstances you may find you need to cope with the intricacies of sharing. In
that case, you will need to understand something about the memory­consistency model of the
machine on which you are running. For example, Figure 2.7 shows an example that could get you
into trouble. If you reason through the logic of the program, you will see that the value printed for

4Actually, the sync statement in foo() is redundant, since the return statement implicitly imposes a sync
immediately before the actual return.

12 CHAPTER 2. PROGRAMMING IN CILK

int x = 0, y = 0, z = 0;

cilk void foo()
{

x = 1;
if (y==0) z++;

}

cilk void bar()
{

y = 1;
if (x==0) z++;

}

cilk int main ()
{

spawn foo();
spawn bar();
sync;
printf("z = %d\n", z);
return 0;

}

Figure 2.7: An example of the subtleties of memory consistency.

z can be either 0 or 1, but not 2. Nevertheless, the value 2 may occasionally be printed on many
contemporary SMP’s. The reason is that some processors and compilers allow in foo the value x
to be written after the value of y is read, since they refer to different locations. In a one­processor
system, this change in the order of execution has no bearing on the correctness of the code, but on
a multiprocessor anomalous results can occur, such as in this example, the printing of the value 2
for z.

As an aid to portability, Cilk provides a primitive Cilk fence() that guarantees that all mem­
ory operations of a processor are committed before the next instruction is executed. Moreover,
the compiler guarantees not to reorder operations across a Cilk fence(). In the example from
Figure 2.7, the printing of the anomalous value of 2 can be precluded by inserting a Cilk fence()
after the statement x = 1; in procedure foo and after the statement y = 1; in procedure bar.
The fence forces each procedure to recognize the values written by the other in the proper fashion.

If the machine on which you run Cilk supports a given memory­consistency model, you are free
to use it. You should be aware, however, that a different consistency model can cause your code
not to port to another computer.

2.6. LOCKING 13

2.6 Locking

Cilk provides mutual exclusion locks that allow you to create atomic regions of code. A lock has
type Cilk lockvar. The two operations on locks are Cilk lock to test a lock and block if it
is already acquired, and Cilk unlock to release a lock. Both functions take a single argument
which is an object of type Cilk lockvar. 5 Acquiring and releasing a Cilk lock has the memory
consistency semantics of release consistency [16, p. 716]. The lock object must be initialized using
Cilk lock init() before it is used. The region of code between a Cilk lock statement and the
corresponding Cilk unlock statement is called a critical section .

Here is an example:

#include <cilk­lib.h>
:
:

Cilk_lockvar mylock;

:

:

{

Cilk_lock_init(mylock);

:
Cilk_lock(mylock); /* begin critical section */

:
:

Cilk_unlock(mylock); /* end critical section */

}

Warning: Locks must be initialized! Make sure you initialize your locks before you use
them.

2.7 Advanced features

This section introduces some of the advanced parallel programming features of Cilk. Section 2.7.1
introduces “inlets” as a means of incorporating a returned result of child procedures into a procedure
frame in nonstandard ways. Cilk allows you to abort already­spawned work, a facility which is
described in Section 2.7.2. Finally, Section 2.7.3 shows how a procedure can interact with Cilk’s
scheduler to test whether it is “synched” without actually executing a sync.

2.7.1 Inlets

Ordinarily, when a spawned procedure returns a value, it is simply stored into a variable in its
parent’s frame:

x = spawn foo(y);

5Prior to Cilk release 5.2, the argument to these functions was a pointer to an object of type Cilk lockvar, not
an object of type Cilk lockvar itself. We changed the prototype of these functions so that an ampersand (&) is not
normally needed when calling them.

14 CHAPTER 2. PROGRAMMING IN CILK

cilk int fib (int n)
{

int x = 0;
inlet void summer (int result)
{

x += result;

return;

}

if (n<2) return n;
else {

summer(spawn fib (n­1));
summer(spawn fib (n­2));
sync;
return (x);

}

}

Figure 2.8: Using an inlet to compute the nth Fibonnaci number.

Occasionally, you may find you want to incorporate the returned value into the parent’s frame in a
more complex way. Cilk provides an inlet feature for this purpose. Inlets are inspired in part by
the inlet feature of TAM [11].

An inlet is essentially a C function internal to a Cilk procedure. Normally in Cilk, the spawning
of a procedure must occur as a separate statement and not in an expression. An exception is made
to this rule if the spawn is performed as an argument to an inlet. In this case, the procedure is
spawned, and when it returns, the inlet is invoked. In the meantime, control of the parent procedure
proceeds to the statement following the inlet.

Figure 2.8 illustrates how the fib() function might be coded using inlets. The inlet summer()
is defined to take a returned value result and add it to the variable x in the frame of the procedure
that does the spawning. All the variables of fib() are available within summer(), since it is an
internal function of fib().

Since an inlet is like a C function, it obeys the restrictions of C functions (see Section 2.3) in
that it cannot contain spawn or sync statements. It is not entirely like a C function, because as
we shall see, Cilk provides certain special statements that may only be executed inside of inlets.
Because inlets cannot contain spawn or sync statements, they consist of a single Cilk thread.

It may happen that an inlet is operating on the variables of a procedure frame at the same
time when the procedure itself or other inlets are also operating on those variables. Consequently,
it is important to understand the effects of these interactions. Cilk guarantees that the threads of
a procedure instance, including its inlets, operate atomically with respect to one another. In other
words, you need not worry that variables in a frame are being updated by another thread while
you are updating variables in the frame. This implicit atomicity of threads makes it fairly easy to
reason about concurrency involving the inlets of a procedure instance without locking, declaring
critical regions, or the like. On the other hand, Cilk guarantees nothing more than dag consistency
in the interaction between two threads belonging to two different procedure instances. Do not
assume that threads of different procedure instances operate atomically with respect to each other.

2.7. ADVANCED FEATURES 15

cilk int fib (int n)

{

int x = 0;

if (n<2) return n;
else {

x += spawn fib (n­1);
x += spawn fib (n­2);
sync;
return (x);

}

}

Figure 2.9: Using implicit inlets to compute the nth Fibonnaci number.

In principle, inlets can take multiple spawned arguments, but Cilk currently has the restriction
that exactly one argument to an inlet may be spawned and that this argument must be the first
argument. This limitation is easy to program around. If one wishes two separate arguments to be
spawned, each spawn can be wrapped with its own inlet that incorporates its return value into the
procedure frame.

Implicit inlets are used by Cilk to support the accumulation of a result returned by a spawned
procedure. Figure 2.9 shows how the fib() function might be coded using implicit inlets. The
accumulating assignment operator += together with a spawn generates an implicit inlet definition
and invocation by the Cilk compiler.

2.7.2 Aborting work

Sometimes, a procedure spawns off parallel work which it later discovers is unnecessary. This
“speculative” work can be aborted in Cilk using the abort primitive inside an inlet. A common use
of abort occurs during a parallel search, where many possibilities are searched in parallel. As soon
as a solution is found by one of the searches, one wishes to abort any currently executing searches
as soon as possible so as not to waste processor resources.

The abort statement, when executed inside an inlet, causes all of the already­spawned children
of the procedure to terminate. Cilk does not guarantee that all children will be aborted instantly,
however. For example, due to the vagaries of scheduling, a child may terminate normally after
the abort statement is executed. Moreover, Cilk makes no promises regarding the return values
of aborted children. If you use abort, it is your responsibility to handle the effects of premature
termination.

Figure 2.10 illustrates how abort can be used in a program to solve the n­queens puzzle. The
goal of the puzzle is to find a configuration of n queens on an n × n chessboard such that no queen
attacks another (that is, no two queens occupy the same row, column, or diagonal). The idea is to
use a backtracking search to explore the tree of possible configurations. As soon as a solution is
found, the search is terminated using the abort primitive.

The Cilk procedure nqueens is called with three arguments: config, the current configuration
of queens on the chess board; n, the total number of queens; and i, the number of queens which
have already been placed on the chess board. The spawn in the for loop of nqueens causes searches

16 CHAPTER 2. PROGRAMMING IN CILK

/* try each possible position for queen <i> */
for (j=0; j<n; j++) {

/* allocate a temporary array and
#include <stdio.h>

* copy the config into it */
#include <stdlib.h>

new_config = Cilk_alloca((i + 1) * sizeof(char));
#include <string.h>

memcpy(new_config, config, i*sizeof(char));
#include <cilk.h>

if (safe(new_config, i, j)) {
#include <cilk­lib.h>

new_config[i] = j;
#include <cilk­compat.h>

catch(spawn nqueens(new_config, n, i+1));
}

int safe(char *config, int i, int j)
{

if (done != NULL)
int r, s;

break;
}

for (r=0; r<i; r++) {

s = config[r]; sync;

if (j==s || i­r==j­s || i­r==s­j)

return done;

return 0;
}

}

return 1;

cilk int main(int argc, char *argv[])
}

{
int n, i;

cilk char *nqueens(char *config, int n, int i)
char *config;

{
char *result;

char *new_config;

char *done = NULL;

if (argc < 2) {
int j;

printf("%s: number of queens required\n", argv[0]);
return 1;

inlet void catch(char *res)
}

{

if (res != NULL) {

n = atoi(argv[1]);
if (done == NULL)

config = Cilk_alloca(n * sizeof(char));
done = res;

abort;

printf("running queens %d\n", n);

}
result = spawn nqueens(config, n, 0);

}
sync;

if (i==n) {

if (result != NULL) {

char *result;
printf("Solution: ");
for (i=0; i<n; i++)

/* put this good solution in heap,
printf("%2d ", result[i]);

and return a pointer to it */
printf("\n");

result = malloc(n*sizeof(char));
}

memcpy(result, config, n*sizeof(char));
else

return result;
printf("No solutions!\n");

}

return 0;
}

Figure 2.10: Using an inlet with abort to find a solution to the n­queens puzzle.

2.7. ADVANCED FEATURES 17

cilk void baz(int n);

cilk void foo(int n)
{

inlet void bar()
{

abort;

}

bar(spawn baz(17));
spawn baz(28);
sync;

}

Figure 2.11: Illustration of an anomaly with the use of abort.

of configurations starting from different columns of the current row to be spawned off in parallel.
The C function safe, which checks whether the queen position at column j conflicts with other
queens already set on the board, determines whether a given subsearch is spawned. Whenever one
of the spawned subsearches completes, the inlet catch is executed, and the other subsearches are
aborted if a solution has been found. Thus, when a solution has been discovered, the computation
terminates.

When programming speculative computations using abort, there are some anomalies about
which you should be aware. We have mentioned some of these anomalies: children may not be
aborted instantly and control may be resumed at a sync without return values from aborted
children having been set. A more subtle problem is sketched in Figure 2.11.

The procedure foo spawns two children: baz(17) and baz(28). The question is, when baz(17)
returns, and the inlet executes the abort statement, is baz(28) aborted? The answer is, it depends.
If baz(28) has already been spawned but has not yet completed, then it is aborted. If baz(28)
has not been spawned, then it will be spawned and will not be aborted. In other words, abort
only aborts extant children, not future children. If you want to prevent future children from being
spawned, you should set a flag in the inlet indicating that an abort has taken place, and then test
that flag in the procedure before spawning a child. Since threads that belong to the same procedure
execute atomically with respect to each other (including the thread comprising an inlet), no race
conditions can occur whereby the procedure tests the flag, an abort occurs within an inlet, and
then the procedure spawns a child.

2.7.3 Interacting with Cilk’s scheduler

Cilk provides a simple means by which a procedure can determine whether it is “synched” without
actually executing a sync, which might cause the procedure to stall. The variable SYNCHED has value
1 if the scheduler can guarantee that the procedure has no outstanding children and 0 otherwise.6

By testing SYNCHED, you can sometimes conserve space resources and obtain better locality than

6A child in not considered completed until all of its memory operations have completed. For versions of Cilk with
a relaxed memory implementation, the completion of writes may occur well after the last instruction of the child is
executed.

18 CHAPTER 2. PROGRAMMING IN CILK

state1 = alloca(state_size);

/* fill in *state1 with data */

spawn foo(state1);

if (SYNCHED)
state2 = state1;

else

state2 = alloca(state_size);

/* fill in *state2 with data */

spawn bar(state2);

sync;

Figure 2.12: An illustration of the use of SYNCHED to save storage and enhance locality.

if you were completely oblivious to Cilk’s scheduler. Figure 2.12 illustrates such a use of SYNCHED.
The figure shows a Cilk procedure fragment in which two child procedures foo and bar are spawned.
For each child, the procedure must allocate some auxiliary storage on the stack before performing
the spawn. If the spawn of foo has completed executing before bar is spawned, however, then the
space allocated for foo can be reused for bar. By checking the variable SYNCHED, the procedure
detects this situation, and the space is reused. Otherwise, it allocates new space for bar.

The variable SYNCHED is actually more like a macro than an honest­to­goodness variable. The
Cilk type­checking preprocessor [22] actually produces two “clones” of each Cilk procedure: a
“fast” clone that executes common­case serial code, and a “slow” clone that worries about parallel
communication. In the slow clone, which is rarely executed, SYNCHED inspects Cilk’s internal state
to determine if any children are outstanding. In the fast clone, which is almost always executed,
however, the value of SYNCHED is the constant 1. Thus, for the fast clone, cilk2c translates any
Cilk code that tests this variable into C code that tests against a constant. The optimizer in the C
compiler recognizes that this test can be performed at compile time, and thus the test in the fast
clone takes zero runtime.

2.8 The Cilk model of multithreaded computation

Cilk supports an algorithmic model of parallel computation. Specifically, it guarantees that pro­
grams are scheduled efficiently by its runtime system. In order to understand this guarantee better,
this section surveys the major characteristics of Cilk’s algorithmic model.

Recall that a Cilk program can be viewed as a dag, as was illustrated in Figure 2.2. To execute
a Cilk program correctly, Cilk’s underlying scheduler must obey all the dependencies in the dag,
since a thread cannot be executed until all the threads on which it depends have completed. These
dependencies form a partial order, permitting many ways of scheduling the threads in the dag. The
order in which the dag unfolds and the mapping of threads onto processors are crucial decisions
made by Cilk’s scheduler. Every active procedure has associated state that requires storage, and

2.8. THE CILK MODEL OF MULTITHREADED COMPUTATION 19

every dependency between threads assigned to different processors requires communication. Thus,
different scheduling policies may yield different space and time requirements for the computation.

It can be shown that for general multithreaded dags, no good scheduling policy exists. That is,
a dag can be constructed for which any schedule that provides linear speedup also requires vastly
more than linear expansion of space [6]. Fortunately, every Cilk program generates a well­structured
dag that can be scheduled efficiently [7].

The Cilk runtime system implements a provably efficient scheduling policy based on randomized
work­stealing . During the execution of a Cilk program, when a processor runs out of work, it asks
another processor chosen at random for work to do. Locally, a processor executes procedures in
ordinary serial order (just like C), exploring the spawn tree in a depth­first manner. When a child
procedure is spawned, the processor saves local variables of the parent on the bottom of a stack
and commences work on the child. (Here, we use the convention that the stack grows downward,
and that items are pushed and popped from the “bottom” of the stack.) When the child returns,
the bottom of the stack is popped (just like C) and the parent resumes. When another processor
requests work, however, work is stolen from the top of the stack, that is, from the end opposite to
the one normally used by the worker.

Cilk’s work­stealing scheduler executes any Cilk computation in nearly optimal time. From an
abstract theoretical perspective, there are two fundamental limits to how fast a Cilk program could
run. Let us denote with TP the execution time of a given computation on P processors. The work
of the computation is the total time needed to execute all threads in the dag. We can denote the
work with T1, since the work is essentially the execution time of the computation on one processor.
Notice that with T1 work and P processors, the lower bound TP ≥ T1/P must hold. 7 The second
limit is based on the program’s critical­path length , denoted by T∞, which is the execution time
of the computation on an infinite number of processors, or equivalently, the time needed to execute
threads along the longest path of dependency. The second lower bound is simply TP ≥ T∞.

Cilk’s work­stealing scheduler executes a Cilk computation on P processors in time TP ≤
T1/P + O(T∞), which is asymptotically optimal. Empirically, the constant factor hidden by the
big O is often close to 1 or 2 [5], and the formula

TP ≈ T1/P + T∞ (2.1)

is a good approximation of runtime. This performance model holds for Cilk programs that do not
use locks. If locks are used, Cilk does not guarantee anything. (For example, Cilk does not detect
deadlock situations.)

We can explore this performance model using the notion of parallelism , which is defined as
P = T1/T∞. The parallelism is the average amount of work for every step along the critical path.
Whenever P � P , that is, the actual number of processors is much smaller than the parallelism of
the application, we have equivalently that T1/P � T∞. Thus, the model predicts that TP ≈ T1/P ,
and therefore the Cilk program is predicted to run with almost perfect linear speedup. The measures
of work and critical­path length provide an algorithmic basis for evaluating the performance of Cilk
programs over the entire range of possible parallel machine sizes. Cilk’s timing instrumentation
(see Section 4.5) can measure these two quantities during a run of the program, no matter how
many processors are used.

We can bound the amount of space used by a parallel Cilk execution in terms of its serial
space. (We assume here that space is stack allocated and not heap allocated as is provided by the

7This abstract model of execution time ignores memory­hierarchy effects, but is nonetheless quite accurate [5].

20	 CHAPTER 2. PROGRAMMING IN CILK

C library function malloc.) Denote by SP the space required for a P ­processor execution. Then,
S1 is the space required for an execution on one processor. Cilk’s scheduler guarantees that for a
P ­processor execution, we have SP ≤ S1P , which is to say one runtime stack per processor. In fact,
much less space may be required for many algorithms (see [3]), but the bound SP ≤ S1P serves as
a reasonable limit. This bound implies that, if a computation uses a certain amount of memory on
one processor, it will use no more space per processor on average when run in parallel.

The algorithmic complexity measures of work and critical­path length—together with the fact
that you can count on them when designing your program—justifies Cilk as an algorithmic mul­
tithreaded language. In addition, Cilk’s scheduler also guarantees that the stack space used by a
P ­processor execution is never more than P times the stack space of an equivalent one­processor
execution, and sometimes, it can be much less.

2.9 How to measure performance

The Cilk system can be configured to gather various runtime statistics as described in Section 2.2.
Gathering those data imposes a performance penalty, however, as shown in Figure 2.13. There are
two important reasons to measure execution time: to find out how fast the application is and to
analyze what parts of an application are perhaps too slow. In the first case, the absolute time is
of critical importance, whereas in the second case, the relative time is more important. Because
measurements in Cilk perturb the program being measured, it is important to understand how to
measure what you care about.

Cilk can be configured to provide the following measurements.

Performance Measurement: In order to measure execution time, Cilk should be used as follows.

1.	 Compile the application using the cilk command without the flag ­cilk­profile.

2.	 Run the program without bothering about the runtime option ­­stats (see Section 2.2).
Without the ­cilk­profile flag, Cilk only collects the total work and the total running
time. Higher levels of the ­­stats option do not provide significant insight.

Performance Analysis: When tuning a Cilk program for performance, various statistics can be
useful to determine potential problems. These statistics include critical­path length, work,
and number of steal attempts. For performance analysis, use Cilk as follows:

1.	 Compile the application using the cilk command with the flag ­cilk­profile. If
desired, also enable critical­path measurement with ­cilk­critical­path. In the latter
case, your program may be slowed down significantly, depending on the program and
the availability of fast timers on your computer.

2.	 Run the program with your preferred level of the option ­­stats (see Section 2.2).

Figure 2.13 shows speedup measurements that were taken of the example programs distributed
with Cilk­5.2. Do not expect these timings to be exactly reproducible in Cilk 5.3.2. We measured
execution time on one processor T1, execution time on eight processors T8, work, critical­path
length T∞, and parallelism P = T1/T∞. To determine the overhead of the critical path measure­
ments we repeated the experiment without critical­path mesurements. The execution times and
the overhead due to critical­path measurements are reported in columns T1

� , T � and T1/T1
� .8

21 2.9. HOW TO MEASURE PERFORMANCE

with critical path w/o critical path
Program T1 Work T∞ P T8 T1/T8 T �1 T1/T �1 T �8

blockedmul 41.7 40.8 0.00114 35789 5.32 7.8 38.6 1.08 4.96
bucket 6.4 6.1 0.0318 192 1.02 6.3 6.2 1.036 1.02
cholesky 25.1 22.5 0.0709 317 3.68 6.8 14.9 1.68 2.32
cilksort 5.9 5.6 0.00503 1105 0.87 6.7 5.7 1.023 0.862
fft 13.0 12.5 0.00561 2228 1.92 6.8 11.2 1.16 1.85
fib 25.0 19.2 0.000120 160000 3.19 7.8 2.7 9.26 0.344
heat 63.3 63.2 0.191 331 8.32 7.6 63.0 1.0048 8.15
knapsack†
knary

112.0
53.0

104.0
43.0

0.000212
2.15

490566
20

14.3
20.2

7.8
2.6

79.2
12.7

1.41
4.17

8.99
9.19

lu 23.1 23.0 0.174 132 3.09 7.5 22.6 1.022 2.98
magic 6.1 5.5 0.0780 71 0.848 7.2 3.2 1.88 0.472
notempmul 40.4 39.8 0.0142 2803 4.96 8.0 37.5 1.077 4.71
plu 196.1 194.1 1.753 112 30.8 6.4 188.7 1.04 30.7
queens†
spacemul

216.0
39.3

215.0
38.9

0.00156
0.000747

137821
52075

19.4
4.91

11.0
8.0

199.0
37.1

1.085
1.059

17.7
4.73

strassen 4.2 4.1 0.154 27 0.767 5.5 4.2 1.0096 0.773
rectmul 5.0 5.0 0.000578 8599 0.638 7.8 4.6 1.082 0.606
barnes­hut 112.0 112.0 0.629 181 14.8 7.6 108.6 1.03 14.6

Figure 2.13: The performance of example Cilk programs. Time is measured in seconds. Measurements are
only for the core algorithms. Programs labeled by a dagger (†) are nondeterministic, and thus, the running
time on one processor is not the same as the work performed by the computation.

The machine used for the test runs was an otherwise idle Sun Enterprise 5000 SMP, with 8
167­megahertz UltraSPARC processors, 512 megabytes of main memory, 512 kilobytes of L2 cache,
16 kilobytes of instruction L1 cache, and 16 kilobytes of data L1 cache, using two versions of Cilk­5
both compiled with gcc 2.8.1 and optimization level ­O3.

The speedup column T1/T8 gives the time of the 8­processor run of the parallel program com­
pared to that of the 1­processor run (or work, in the case of the nondeterministic programs) of the
same parallel program.

Two of the example programs, queens and knapsack, which are marked by a dagger (†) in the
figure, are nondeterministic programs. Since the work of these programs depends on how they are
scheduled, a superlinear speedup can occur. For these programs, the running time on one processor
is not the same as the work performed by the computation. For the other (deterministic) programs,
the measures of T1 and work should be the same. In practice, differences occur, which are caused
by a lack of timing accuracy. Because it reports work and critical­path length measurements,
Cilk allows meaningful speedup measurements of programs whose work depends on the actual
runtime schedule. Conventionally, speedup is calculated as the one­processor execution time divided
by the parallel execution time. This methodology, while correct for deterministic programs, can
lead to misleading results for nondeterministic programs, since two runs of the same program can
actually be different computations. Cilk’s instrumentation can compute the work on any number
of processors by adding up the execution times of individual threads, thereby allowing speedup to
be calculated properly for nondeterministic programs.

As can be seen from the figure, all programs exhibit good speedup. Even the complicated and
irregular Barnes­Hut code achieves a speedup of 7.6 on 8 processors [25].

The right portion of Figure 2.13 compares execution times where the critical­path length mea­

22 CHAPTER 2. PROGRAMMING IN CILK

surement is disabled with those where the critical­path length measurement is enabled. The per­
formance gain from disabling the critical­path length measurement can be significant. On other
architectures performance measurements with the critical­path length measurement enabled may
be completely meaningless. Consequently, enabling the critical­path length measurements is only
sensible for performance analysis purposes.

Chapter 3

Language Reference

This chapter defines the grammar for the Cilk language. The grammar rules are given as additions
to the standard ISO C grammar (see [15, Appendix B]).

The typographic conventions used in this chapter are the same as [15]. In particular:

•	 Typewriter text (like this) denotes Cilk keywords or any other text that should be copied
verbatim.

•	 Italicized text (like this) denotes grammatical classes (things like statements and declara­
tions).

•	 Square brackets (like []) denote optional items.

3.1 Program structure

A Cilk program consists of ordinary ANSI C code plus definitions and declarations of Cilk proce­
dures. A Cilk program contains one special Cilk procedure named main, which takes the standard
C command line arguments and returns an integer, just like the C main function. At runtime, the
main procedure is the initial procedure invoked from the runtime system, and the one from which
all subsequent computation ensues.

Within a Cilk program, C code and C functions are used for sequential computation. C functions
can be called from Cilk procedures, but Cilk procedures cannot be invoked from C functions.

3.2 Keywords

All C keywords are also keywords of Cilk. In addition, the following words have special meaning
in Cilk, and thus cannot be used as ordinary identifiers in Cilk code:

cilk, spawn, sync, inlet, abort, shared, private, SYNCHED

The type qualifier cilk is used to declare Cilk procedures. Similarly, inlet is a type qualifier
used to declare inlets (see Section 3.7).

Ordinary C code is permitted to use Cilk keywords as identifiers if one of the following conditions
is true:

23

24	 CHAPTER 3. LANGUAGE REFERENCE

•	 The C code appears in a file whose extension is not .cilk or .cilkh (the conventional
extensions for Cilk source and header files). The Cilk preprocessor treats files without these
extensions as straight C. Thus, standard C header files included by a Cilk program may use
Cilk reserved words as identifiers.

•	 the C code is preceded by #pragma lang +C and followed by #pragma lang ­C. These direc­
tives tell the Cilk preprocessor to treat the code between them as straight C. This mechanism
can be used when C code that contains Cilk keywords as ordinary identifiers is found within
a Cilk program (.cilk) file.

For instance, the following C code uses sync as a variable name. It is bracketed by #pragma lang
directives to prevent the preprocessor from issuing syntax errors.

#pragma lang +C
int sync;
sync = sync+1;
#pragma lang ­C

3.3 Procedure definition and declaration

Cilk extends ANSI C with constructs to define procedures:

declaration: cilk type proc (arg­decl 1, . . . , arg­decl n) body

The keyword cilk specifies a Cilk procedure definition. Argument declarations follow the ANSI
C convention. When the body of the definition is the null statement (;), this form is taken to be a
prototype declaration. An empty or void argument list specifies a procedure with no arguments.
Cilk procedure bodies take the form of a C compound statement. Cilk procedure bodies may also
contain Cilk statements, including procedure spawn’s, sync’s, inlet declarations, and other Cilk
constructs.

A Cilk procedure declaration can be used anywhere an ordinary C function declaration can be
used. Cilk procedures must be spawn’ed; they cannot be called like ordinary C functions.

3.4 Spawning

The following Cilk statement forms can be used to spawn Cilk procedures to start parallel compu­
tations:

statement: [lhs op] spawn proc (arg1, . . . , argn);

where op may be any of the following assignment operators:

= *= /= %= += ­= <<= >>= &= ^= |=

These forms are used to spawn Cilk procedures. The identifier proc must be defined or declared
as a Cilk procedure with the correct number and types of arguments for arg1, . . . , argn. Normally,
the left­hand side lhs of op must be present if and only if proc has a non­void return type, and lhs
must have the same type as the return type of the procedure. Similarly, when op is += or ­= and
the return type of proc is an integer, lhs may be a pointer in order to perform pointer arithmetic:

3.5. RETURNING VALUES 25

int *p;

cilk int foo(...);

p += spawn foo(...);

A procedure may be spawned even if it is defined in a different source file, as long as a prototype
for it is in scope.

Arguments passed to spawned procedures or threads can be any valid C expression.
Notice that the given syntax specifies a statement, not an expression. A syntax like

a = spawn foo() + spawn bar();

is invalid in Cilk.
A spawn statement can only appear within a Cilk procedure; it is invalid in C functions and in

inlets.
Unlike C, no assignment conversion is done for the assignment operator in a spawn statement,

and therefore code such as:

cilk float foo(void);

cilk void bar(void)

{

int x;

x = spawn foo();

sync;

}

is invalid in Cilk. Instead, one must first assign the result to a variable of type float and then use
a regular C assignment to convert this variable to an integer. 1

3.5 Returning values

Within a Cilk procedure,

statement: return [expr];

can be used to communicate a return value to the spawning procedure, with the additional effect
of terminating the execution of the current procedure.

3.6 Synchronization

Within the body of a Cilk procedure,

statement: sync;

can be used to wait for all child procedures spawned before it in the current procedure to return.
Typically, it is used to block the execution of the current procedure until all return values are
available:

1We anticipate assignment conversion will be added to the semantics of spawn in a future release.

26 CHAPTER 3. LANGUAGE REFERENCE

x = spawn foo (...);
y = spawn bar (...);
...
sync;
/* values of x, y available */

When the procedure resumes, execution starts at the point immediately after the sync statement.
The sync statement has additional meaning for dag­consistent shared memory. The sync

statement ensures that all writes to shared memory performed by the spawn’s preceding the sync
are seen by the code after the sync. This natural overloading of the sync statement for control flow
synchronization and data synchronization makes dag­consistent shared memory easy to program
and understand.

A sync statement may appear anywhere a statement is allowed in a Cilk procedure, including
within the clause of an if statement and in other control constructs. A sync statement may not
appear in an inlet definition.

3.7 Inlet definition

An inlet is a piece of code that specifies the actions to be done when a spawned procedure returns.
Inlets must be defined in the declaration part of a procedure. An inlet executes atomically with
respect to the spawning procedure and any other inlets that are declared in that procedure. Thus
an inlet behaves as an atomic region that can update the parent frame.

An inlet should be defined in the declaration portion of a Cilk procedure:

declaration: inlet type inlet­name (arg­decl 1, . . . , arg­decl n) body

The keyword inlet specifies an inlet definition. Argument declarations follow the ANSI C
convention.

Inlet bodies take the form of a C compound statement. The Cilk statement abort and the Cilk
variable SYNCHED are allowed in inlet bodies. However, spawn, sync, and other inlet declarations
are not allowed in inlet bodies. The scope of an inlet declaration is limited to the block in which
it is declared.

3.8 Inlet invocation

Within the scope of an inlet declaration, the inlet can be invoked as:

statement: [lhs =] inlet (arg1, . . . , argn);

where arg1 should be a spawn argument as:

spawn proc (proc arg1, . . . , proc argm)

Arguments arg2, . . . , argn of the inlet and proc arg1, . . . , proc argm of the procedure proc are
first evaluated, and then proc is invoked as in the spawn statement (see Section 3.4). Control of
the calling procedure may resume at the statement after the inlet invocation in parallel with the
execution of proc. When proc completes execution, inlet is invoked with the result returned from
the spawned procedure, if any, and with its other arguments arg2, . . . , argn. Note that inlet runs

3.9. ABORTING 27

in the lexical context of the procedure defining inlet, and thus it can reference automatic variables
in its parent procedure.

At least one argument (that is, the first spawn argument) must be present in an inlet invocation.
If proc has a non­void return type, the number and types of arg1, . . . , argn should match the number
and types of inlet ’s formal arguments. If proc has a void return type, the number and types of
arg2, . . . , argn should match the number and types of inlet ’s formal arguments. The return type
of inlet should match the type of lhs. The value returned by inlet will be assigned to lhs. If lhs is
not present, the return type of inlet must be void.

3.9 Aborting

Within the body of a Cilk inlet or Cilk procedure,

statement: abort;

can be used to abort the execution of outstanding child procedures. The abort statement can be
used to terminate prematurely useless work in a speculative execution. Any outstanding children
may be stopped before completion, and any return values or side effects of these children may or
may not be observed.

3.10 Cilk scheduler variables

The read­only Cilk scheduler variable SYNCHED allows a procedure to determine the progress of its
spawned child procedures. Within a Cilk procedure or inlet, the variable SYNCHED can be used to
test whether any outstanding child procedures exist. The variable SYNCHED has the value 1 if the
scheduler can guarantee that there are no outstanding child procedures, and 0 otherwise. If SYNCHED
has value 1, the scheduler also guarantees that all memory operations of all spawned children have
completed as well. Because these memory operations may take a long time to complete in some
Cilk implementations, SYNCHED may have value 0 even though all spawned children have finished
executing.

The variable SYNCHED may only appear within a Cilk procedure or inlet and may not be used
within C functions.

Chapter 4

Specification of Cilk Libraries

This chapter describes variables and functions that the Cilk system exports, and that may be
used by Cilk programs. The Cilk library provides locks, debug support, timing functions, and
replacement for C functions that are known not to be thread­safe.

To use the features described in this chapter, a program must include cilk­lib.h.

4.1 Global variables

extern int Cilk_active_size;

meaning: The variable Cilk active size is a read­only variable that specifies how many pro­
cesses Cilk is running on. The user may set this variable only by using the ­­nproc
command­line option (see Section 2.2).

default: This variable defaults to 1 (one processor).

extern int Self;

meaning: The read­only variable Self specifies the current processor number. It is guaranteed to
be between 0 and Cilk active size­1.

4.2 Shared memory support

For allocating stack memory dynamically, the following primitive is available:

void *Cilk_alloca(size_t size);

This primitive returns a pointer to a block of size bytes. Memory returned by Cilk alloca is
automatically freed at the end of the current Cilk procedure or C function, depending on where
Cilk alloca is called.

[Implementation note: The current implementation of Cilk alloca is problematic. It works
fine within Cilk procedures, but not inside C functions. Memory allocated with Cilk alloca inside
a C function is not automatically freed at the end of the function, and will persist until its parent
Cilk procedure exits.]

28

4.3. DEBUG SUPPORT 29

4.3 Debug support

Cilk supports the following macro, analogous to assert.

Cilk_assert(expression)

meaning: Cilk assert() is a macro that indicates expression is expected to be true at this
point in the program. If expression is false (0), it displays expression on the standard
error with its line number and file name, and then terminates the program and dumps core.
Compiling with the preprocessor option ­DNDEBUG, or with the preprocessor control statement
#define NDEBUG in the beginning of the program, will stop assertions from being compiled
into the program.

4.4 Locks

In Cilk, locks are sometimes required for mutual exclusion or to strengthen the memory model.
Cilk locks are declared as type Cilk lockvar. The following statements are available operations
on lock variables:

Cilk lock init(Cilk lockvar l) Initialize a lock variable. Must be called before any other lock
operations are used on the lock.

Cilk lock(Cilk lockvar l) Attempt to acquire lock l and block if unable to do so.

Cilk unlock(Cilk lockvar l) Release lock l.

Cilk’s locks are implemented to be as fast as is supported by the underlying hardware while
still supporting release consistency [16, p. 716].

Along with the advantages of locks come some disadvantages. The most serious disadvantage of
locks is that a deadlock might occur, if there is a cyclic dependence among locks. Deadlocks often
arise from tricky nondeterministic programming bugs, and the Cilk system contains no provisions
for deadlock detection or avoidance. Although this manual is not the place for a complete tutorial
on deadlock avoidance, a few words would be prudent.

The simplest way to avoid deadlock in a Cilk program is to hold only one lock at a time. Unless
a program contends for one lock while at the same time holding another lock, deadlock cannot
occur.

If more than one lock needs to be held simultaneously, more complicated protocols are necessary.
One way to avoid deadlocks is to define some global order on all locks in a program, and then
acquire locks only in that order. For instance, if you need to lock several entries in a linked list
simultaneously, always locking them in list order will guarantee deadlock freedom. Memory order
(as defined by pointer comparison) can often serve as a convenient global order.

If a program cannot be arranged such that locks are always acquired in some global order,
deadlock avoidance becomes harder. In general, it is a computationally intractable problem to
decide whether a given program is deadlock­free. Even if the user can guarantee that his program
is deadlock­free, Cilk may still deadlock on the user’s code because of some additional scheduling
constraints imposed by Cilk’s scheduler. Additional constraints on the structure of lock­unlock
pairs are required to make sure that all deadlock­free programs will execute in a deadlock­free

30 CHAPTER 4. SPECIFICATION OF CILK LIBRARIES

fashion with the Cilk scheduler. These additional constraints are as follows. First, each lock and
its corresponding unlock must be in the same Cilk procedure. Thus, you cannot unlock a lock that
your parent or child procedure locked. Second, every unlock must either follow its corresponding
lock with no intervening spawn statements, or follow a sync with no intervening spawn statements.
With these two additional constraints, Cilk will execute any deadlock­free program in a deadlock­
free manner.

Locking can be dangerous even if deadlock is not a possibility. For instance, if a lock is used
to make the update of a counter atomic, the user must guarantee that every access to that counter
first acquires the lock. A single unguarded access to the counter can cause a data race, where the
counter update does not appear atomic because some access to it is unguarded.

4.5 Timers

Cilk provides timers to measure the work and critical path of a computation as it runs. The overall
work and critical­path length of a computation can be printed out automatically, as is described in
Section 2.2. Sometimes, however, it is useful to measure work and critical path for subcomputations.
This section describes such a timer interface. The interface is not particularly elegant right now,
but with care, the work and critical path of subcomputations can be accurately measured.

The type Cilk time contains a (hopefully platform­independent) Cilk time measure. The Cilk
runtime system updates the variables Cilk user critical path and Cilk user work at thread
boundaries when the user code is compiled with the ­cilk­critical­path flag. These variables
are stored using Cilk­internal time units. The function Cilk time to sec() converts the Cilk­
internal units into seconds.

The normal way to determine the work or critical path of a subcomputation is to take a reading
of Cilk user critical path or Cilk user work before the subcomputation, take another reading
after the subcomputation, and subtract the first reading from the second. Because these variables
are only updated at thread boundaries, however, reliable timings can only be obtained in general if
they are read at the beginning of a procedure or immediately after a sync. Reading them at other
times may yield innaccurate values.

In addition to work and critical­path lengths, the function Cilk get wall time() returns the
current wall­clock time in Cilk­internal wall­clock units. The wall­clock units are not necessarily
the same as the work and critical­path units. The function Cilk wall time to sec() converts the
Cilk­internal units into seconds.

Here is an example usage.

Cilk_time tm_begin, tm_elapsed;

Cilk_time wk_begin, wk_elapsed;

Cilk_time cp_begin, cp_elapsed;

/* Timing. "Start" timers */
sync;
cp_begin = Cilk_user_critical_path;
wk_begin = Cilk_user_work;
tm_begin = Cilk_get_wall_time();

31 4.5. TIMERS

spawn cilksort(array, tmp, size);

sync;

/* Timing. "Stop" timers */

tm_elapsed = Cilk_get_wall_time() ­ tm_begin;

wk_elapsed = Cilk_user_work ­ wk_begin;

cp_elapsed = Cilk_user_critical_path ­ cp_begin;

printf("\nCilk Example: cilksort\n");

printf(" running on %d processor(s)\n\n", Cilk_active_size);

printf("options: number of elements = %ld\n\n", size);

printf("Running time = %4f s\n", Cilk_wall_time_to_sec(tm_elapsed));

printf("Work = %4f s\n", Cilk_time_to_sec(wk_elapsed));

printf("Critical path = %4f s\n\n", Cilk_time_to_sec(cp_elapsed));

Chapter 5

How Cilk Works

This section outlines the basic runtime assumptions and compilation schemes for Cilk procedures,
which may be useful to those wishing to understand more about Cilk implementation or the C code
generated by the cilk2c compiler.

We first describe how a Cilk program is scheduled on one processor (nanoscheduling), and
then describe how a Cilk program is scheduled on multiple processors. Cilk currently has no job
scheduler (the scheduling of multiple simultaneous Cilk programs).

5.1 Nanoscheduling

The nanoscheduler’s job is to schedule procedures within a single processor. It is very important that
the nanoscheduler make scheduling decisions quickly, so the nanoscheduler is “compiled” into the
source code by cilk2c. The nanoscheduler’s algorithm is very simple: it executes a procedure and
its subprocedures in exactly the same order as they would execute in C. This schedule guarantees
that on one processor, when no microscheduling is needed, the Cilk code executes in the same order
as the C code.

The nanoscheduler is very easy to implement. The cilk2c compiler translates each Cilk pro­
cedure into a C procedure with the same arguments and return value. Each spawn is translated
into its equivalent C function call. Each sync is translated into a no­operation, because all children
would have already completed by the time the sync point is reached.

In order to enable the use of our microscheduler, we must add some code to the nanoscheduler
to keep track of the current scheduling state. The nanoscheduler uses a deque of frames for this
purpose. A Cilk frame is a data structure which can hold the state of a procedure, and is analogous
to a C activation frame. A deque is a doubly­ended queue, which can be thought of as a stack from
the nanoscheduler’s perspective. The deque is tightly coupled to the C stack, with a one­to­one
correspondence between the frames on the deque and the activation frames on the C stack.1

The nanoscheduler performs the following additional operations to keep track of the state of
the computation. When a procedure is first called, it initializes a frame to hold its saved state,
and pushes this frame on the bottom of the frame deque. When a spawn occurs, the state of the

1We maintain a separate deque instead of using the native C stack to maintain portability. Someday, we hope to
merge the frame deque and the native C stack, which will further reduce the overhead of the nanoscheduler.

32

33 5.1. NANOSCHEDULING

struct _fib_frame {
StackFrame header;
struct {int n;} scope0;
struct {int x;int y;} scope1;

};

int fib(int n)

{

struct _fib_frame *_frame;

_INIT_FRAME(_frame,sizeof(struct _fib_frame),_fib_sig);

{

if (n < 2)

{_BEFORE_RETURN_FAST();return (n);}

else {

int x;int y;

{ _frame­>header.entry=1;

_frame­>scope0.n=n;

x=fib(n­1);

_XPOP_FRAME_RESULT(_frame,0,x);

}
{ _frame­>header.entry=2;

_frame­>scope1.x=x;

y=fib(n­2);

_XPOP_FRAME_RESULT(_frame,0,y);

}

/* sync */;

{_BEFORE_RETURN_FAST();return (x+y);}

}
}

}

Figure 5.1: Nanoscheduled version of fib.

current procedure is saved in this frame. Finally, when the procedure completes and returns to its
parent, its frame is popped.

Figure 5.1 shows the nanoscheduled version of the Fibonacci example from Figure 2.1(b).
cilk2c generates a frame for the fib procedure to hold all of its state. The state of fib in­
cludes its argument n and its two local variables, x and y. Additional state, such as the procedure
ID and program counter, are stored in the header.

The procedure fib has one additional local variable, frame, which holds a pointer to the pro­
cedure’s frame. The frame is initialized and pushed onto the deque with the INIT FRAME macro.
For each spawn, the state of the procedure is saved into the frame. The state that is saved includes
the entry number (representing the program counter), and each live, dirty variable. For instance,
the first spawn, identified by entry number 1, saves the entry number and the argument n into the
frame. The spawned procedure is then called with a normal C function call. After the function
call returns, execution of the parent resumes after the spawn. The second spawn is the same as the
first, except it has entry number 2, and the only live, dirty variable is x.

The nanoscheduler must check to see whether the procedure has been migrated after each
spawn call. This check is done in the XPOP FRAME RESULT macro by checking if the current frame

34 CHAPTER 5. HOW CILK WORKS

is still in the frame deque. If the frame is not in the deque, then it has been migrated, in which
case XPOP FRAME RESULT returns immediately with a dummy return value. This immediate return
feature quickly cleans up the C stack when the frame deque becomes empty. Otherwise, the
procedure can be resumed after the spawn call in normal C fashion.

Finally, when a procedure returns, the nanoscheduler pops its frame off the deque and frees it
using the BEFORE RETURN FAST macro.

Note that during nanoscheduling, the state information written to the frame deque is never
used. The nanoscheduler is simply recording this information for use by the microscheduler, which
is described in the next section.

5.2 Microscheduling

The microscheduler’s job is to schedule procedures across a fixed set of processors. The microsched­
uler is implemented as a randomized work­stealing scheduler. Specifically, when a processor runs
out of work, it becomes a thief and steals work from a victim processor chosen uniformly at
random. When it finds a victim with some frames in its deque, it takes the topmost frame (the
least recently pushed frame) on the victim’s deque and places it in its own deque. It then gives the
corresponding procedure to the nanoscheduler to execute.

The procedure given to the nanoscheduler is a different version of the stolen procedure, however.
We call this version the “slow” version of the procedure, because it has a higher overhead than
the normal nanoscheduled routine. Because the slow version is invoked from a generic scheduling
routine, its interface is standard. Instead of receiving its arguments as C arguments, it receives
a pointer to its frame as its only argument, from which it can extract its arguments and local
state. It also produces a return value using the macro SET RESULT instead of returning a result
normally. Finally, because this procedure may have outstanding children on another processor, it
may suspend at a synchronization point.

Figure 5.2 shows the microscheduled version of the Fibonacci example from Figure 2.1(b). The
microscheduled version takes a pointer to the frame as its only argument, and returns void. The first
thing the microscheduled function does is to restore its state, first restoring the program counter
using the switch statement, and then restoring local variables using the state­restoring code at
each sync label.

For each return in the Cilk code, instead of returning the value as in C, the slow version
uses SET RESULT to record the return value in a temporary area and then returns a void value.
The runtime system can then read the return value from this temporary area and store it in the
appropriate final destination.

At each synchronization point, the slow version needs to save its state and then check whether
any return values are still outstanding. It does this with the SYNC macro, which returns non­zero
if any children are still outstanding. If there are still children outstanding, the slow version returns
to the scheduler, where it is suspended by the runtime system.

Since slow versions of procedures are created only during a steal, they are always topmost
in a processor’s frame deque. All other procedures in the frame deque are the standard, fast,
nanoscheduled versions. Therefore, as long as the number of steals is small, most of the computation
is performed using the nanoscheduled routines.

35 5.2. MICROSCHEDULING

static void _fib_slow(struct _fib_frame *_frame)
{

int n;
switch (_frame­>header.entry) {
case 1: goto _sync1;
case 2: goto _sync2;
case 3: goto _sync3;
}
n=_frame­>scope0.n;
{
if (n < 2)

{_SET_RESULT((n));_BEFORE_RETURN_SLOW();return;}

else {

{ int _temp0;
_frame­>header.entry=1;
_frame­>scope0.n=n;
_temp0=fib(n­1);
_XPOP_FRAME_RESULT(_frame,/* return nothing */,_temp0);
_frame­>scope1.x=_temp0;
if (0) { _sync1:; n=_frame­>scope0.n; }

}
{ int _temp1;

_frame­>header.entry=2;
_temp1=fib(n­2);
_XPOP_FRAME_RESULT(_frame,/* return nothing */,_temp1);
_frame­>scope1.y=_temp1;
if (0) { _sync2:; }

}

{ _frame­>header.entry=3;

if (_SYNC) {

return;

_sync3:;

}

}

{ _SET_RESULT((_frame­>scope1.x+_frame­>scope1.y));

_BEFORE_RETURN_SLOW();return;
}

}
}

}

Figure 5.2: Microscheduled version of fib.

36	 CHAPTER 5. HOW CILK WORKS

5.3 Overheads

The overhead of the nanoscheduler, as compared to a serial C version, comes from five factors:

•	 A procedure’s frame needs to be allocated, initialized, and pushed on the deque at the start of
each procedure. These operations can be performed in less than a dozen assembly instructions.

•	 A procedure’s state needs to be saved before each spawn. The entry number and each live,
dirty variable must be saved. Note that some memory synchronization operations are also
required at this point for architectures which do not implement sequential consistency (see
Section 5.4 for details).

•	 A procedure must check whether its frame has been stolen after each spawn. This check
requires only two reads, a compare, and a branch. Again, memory synchronization operations
are required at this point for architectures which do not implement sequential consistency.

•	 On return, a procedure must free its frame, which takes only a few instructions.

•	 One extra variable is needed to hold the frame pointer. This extra variable imposes a small
amount of additional register pressure on the compiler’s register allocator.

This overhead is very small in practice. For instance, the Cilk Fibonacci program runs only
3 times slower than the sequential C program on one processor. For programs with larger thread
lengths, this overhead would be minimal.

5.4 Interactions with weak memory models

In general, the Cilk 5.3.2 scheduler will work for any reasonable consistency model supported by
modern SMPs. The Cilk scheduler requires stronger consistency in the three following areas:

•	 The scheduler requires that obtaining a lock on a data structure guarantees atomic access to
that data structure.

•	 When a frame is pushed on the deque, the scheduler requires that all writes must be globally
visible before the tail pointer (the end of deque pointer) is incremented. In systems where
writes can be reordered, a memory barrier of some sort must be inserted before the pointer
increment. Writes remain ordered on our current platform (UltraSPARC SMP), so no barrier
is needed for our implementation.

•	 When a frame is popped from the deque, the scheduler requires that the write of the tail
pointer be globally visible before the read of the exception pointer is performed. In systems
where reads can be performed before preceeding writes are globally visible, a memory barrier
of some sort must be inserted before the read of the exception pointer. Our UltraSPARC
SMP implementation requires a “StoreLoad” barrier at this point.

Note that the last two requirements are simply optimizations to avoid the cost of a lock acquire
and release on each push and pop of a frame. In the worst case, the last two requirements can be
implemented using a lock acquire and release.

Appendix A

People

The Cilk project is led by Prof. Charles E. Leiserson of the MIT Laboratory for Computer Science
and has been funded in part by DARPA Grant F30602­97­1­0270.

The current maintainer of Cilk is Matteo Frigo (athena@fftw.org), who is responsible for the
Cilk 5.3.2 release.

Cilk 5.3.2 is the product of the effort of many people over many years. The following people
contributed code, example programs, and/or documentation to the Cilk 5.3.2 system:

Guang­Ien Cheng

Don Dailey

Mingdong Feng

Charles E. Leiserson

Phil Lisiecki

Alberto Medina

Harald Prokop

Keith H. Randall

Bin Song

Andy Stark

Volker Strumpen

All those who have worked on previous versions of Cilk:

Robert D. Blumofe

Michael Halbherr

Christopher F. Joerg

Bradley C. Kuszmaul

Howard Lu

Robert Miller

Aske Plaat

Richard Tauriello

Daricha Techopitayakul

Yuli Zhou

37

38 APPENDIX A. PEOPLE

Finally, thanks to those who have spent valuable time with Cilk and contributed with their expe­
rience:

Arvind

Reid Barton

Ching Law

John Litvin

Igor Lyubashevskiy

Rolf Riesen

Andy Shaw

Mike Stupak

Adrian M. Soviani

Svetoslav Tzvetkov

Appendix B

Copyright and Disclaimers

c cCilk 5.3.2 is Copyright � 2002 Massachusetts Institute of Technology, Copyright � 2002 Matteo
Frigo.

Cilk 5.3.2 is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR­
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PAR­
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111­1307 USA.

39

Bibliography

[1] Robert D. Blumofe. Managing storage for multithreaded computations. Master’s thesis, De­
partment of Electrical Engineering and Computer Science, Massachusetts Institute of Tech­
nology, September 1992. Also available as MIT Laboratory for Computer Science Technical
Report MIT/LCS/TR­552.

[2] Robert D. Blumofe. Executing Multithreaded Programs Efficiently. PhD thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Septem­
ber 1995.

[3] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson, and Keith H.
Randall. An analysis of dag­consistent distributed shared­memory algorithms. In Proceedings
of the Eighth Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA),
Padua, Italy, June 1996.

[4] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson, and Keith H.
Randall. Dag­consistent distributed shared memory. In Tenth International Parallel Processing
Symposium (IPPS), pages 132–141, Honolulu, Hawaii, April 1996.

[5] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H.
Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system. In Proceedings of
the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), pages 207–216, Santa Barbara, California, July 1995.

[6] Robert D. Blumofe and Charles E. Leiserson.	 Space­efficient scheduling of multithreaded
computations. In Proceedings of the Twenty Fifth Annual ACM Symposium on Theory of
Computing (STOC), pages 362–371, San Diego, California, May 1993.

[7] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by work
stealing. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science
(FOCS), pages 356–368, Santa Fe, New Mexico, November 1994.

[8] Robert D. Blumofe and David S. Park. Scheduling large­scale parallel computations on net­
works of workstations. In Proceedings of the Third International Symposium on High Per­
formance Distributed Computing (HPDC), pages 96–105, San Francisco, California, August
1994.

[9] Guang­Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith Randall, and Andrew F. Stark.
Detecting data races in cilk programs that use locks. In Proceedings of the Tenth Annual ACM

40

41 BIBLIOGRAPHY

Symposium on Parallel Algorithms and Architectures (SPAA), Puerto Vallarta, Mexico, June
28–July 2 1998.

[10] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.	 Introduction to Algorithms.
MIT Press and McGraw Hill, 1990.

[11] David E. Culler, Anurag Sah, Klaus Erik Schauser, Thorsten von Eicken, and John Wawrzynek.
Fine­grain parallelism with minimal hardware support: A compiler­controlled threaded ab­
stract machine. In Proceedings of the Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages 164–175, Santa Clara,
California, April 1991.

[12] Mingdong	 Feng and Charles E. Leiserson. Efficient detection of deter­
minacy races in Cilk programs. Submitted for publication. Available at
ftp://theory.lcs.mit.edu/pub/cilk/spbags.ps.gz, January 1997.

[13] Matteo Frigo.	 Portable High­Performance Programs. PhD thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, June 1999.

[14] Michael Halbherr, Yuli Zhou, and Christopher F. Joerg.	 MIMD­style parallel programming
with continuation­passing threads. In Proceedings of the 2nd International Workshop on Mas­
sive Parallelism: Hardware, Software, and Applications, Capri, Italy, September 1994.

[15] Samuel P. Harbison and Guy L. Steele Jr. C, A Reference Manual. Tartan, Inc., 1995.

[16] John L. Hennessy and David A. Patterson. Computer Architecture: a Quantitative Approach.
Morgan Kaufmann, San Francisco, CA, second edition, 1996.

[17] Christopher F. Joerg.	 The Cilk System for Parallel Multithreaded Computing. PhD thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Tech­
nology, January 1996.

[18] Christopher F. Joerg and Bradley C. Kuszmaul. Massively parallel chess. In Proceedings of the
Third DIMACS Parallel Implementation Challenge, Rutgers University, New Jersey, October
1994. Available at ftp://theory.lcs.mit.edu/pub/cilk/dimacs94.ps.Z.

[19] Bradley C. Kuszmaul.	 Synchronized MIMD Computing. PhD thesis, Department of Elec­
trical Engineering and Computer Science, Massachusetts Institute of Technology, May 1994.
Available as MIT Laboratory for Computer Science Technical Report MIT/LCS/TR­645 or
ftp://theory.lcs.mit.edu/pub/bradley/phd.ps.Z.

[20] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman, Mahesh N.
Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul, Margaret A. St. Pierre,
David S. Wells, Monica C. Wong, Shaw­Wen Yang, and Robert Zak. The network architecture
of the Connection Machine CM­5. In Proceedings of the Fourth Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA), pages 272–285, San Diego, California, June
1992.

[21] Charles E. Leiserson and Harald Prokop. A minicourse on multithreaded programming. Avail­
able on the Internet from http://theory.lcs.mit.edu/~cilk, 1998.

42 BIBLIOGRAPHY

[22] Robert C. Miller. A type­checking preprocessor for Cilk 2, a multithreaded C language. Mas­
ter’s thesis, Department of Electrical Engineering and Computer Science, Massachusetts Insti­
tute of Technology, May 1995.

[23] Joel Moses.	 The function of FUNCTION in LISP or why the FUNARG problem should be
called the environment problem. Technical Report memo AI­199, MIT Artificial Intelligence
Laboratory, June 1970.

[24] Vijay S. Pande, Christopher F. Joerg, Alexander Yu Grosberg, and Toyoichi Tanaka. Enumer­
ations of the hamiltonian walks on a cubic sublattice. Journal of Physics A, 27, 1994.

[25] Keith H. Randall.	 Cilk: Efficient Multithreaded Computing. PhD thesis, Department of Elec­
trical Engineering and Computer Science, Massachusetts Institute of Technology, May 1998.

