
6.897: Selected Topics in Cryptography March 13, 2004

Lecture 12

Lecturer: Ran Canetti Scribe: Dah-Yoh Lim

1 Recap

Last lecture we started to look at how we could realize any two-party functionality for any number
of faults in the FCRS-hybrid model. In this lecture we will finish this discussion and extend it to
the multi-party case. We will also note that we can get rid of the CRS in the case of an honest
majority. All the material in this lecture is taken from [CLOS02].

In more detail, we follow the [GMW87] paradigm of first constructing a protocol secure against
semi-honest adversaries (i.e., even the corrupted parties follow the protocol specification), then
constructing a general compiler that transforms protocols secure against semi-honest adversaries
to “equivalent” protocols secure against Byzantine adversaries.

In the previous lecture we presented the ideal oblivious transfer functionality, FOT. In this
lecture we will show how to realize FOT for semi-honest adversaries in the plain model, and show
how to realize any functionality in the FOT-hybrid model.

1.1 The Semi-honest Adversarial Model

Recall that there are two natural variants of the semi-honest adversarial model. In the first variant
the adversaries can change the inputs of the corrupted parties, but are otherwise passive. In the
second variant the environment talks directly with the parties, and the adversaries only listen
(cannot even change the inputs). These variants are incomparable, because there are protocols
secure under one model but insecure under the other. We will actually need the first variant for
the compiler, but the protocol we are going to see shortly is secure under both variants.

1.2 Standard Functionalities

Recall that in lecture 8 we defined “standard functionalities” as the functionalities which do not
utilize their direct knowledge of the identities of the corrupt parties. Specifically, it consists of
an “outer shell” and a “core”. The core is an arbitrary probabilistic polynomial-time algorithm,
while the shell is a simple interfacing procedure described as follows. The shell forwards any
incoming messages to the core, with the exception that notifications of corruptions of parties are
not forwarded to the core. Outgoing messages generated by the core are copied by the shell to the
subroutine output tape of the recipient. On top of these, S is allowed to delay the receiving of
inputs and sending of outputs: the shell actually notifies S about its intentions, and only carries
on to do so when S OKs it. In handling corruptions the shell hands an output “corrupted” to the
party that S wants to corrupt, and hands S all the I/O history so far of the corrupted party. From
now on all of the corrupt party’s I/O privileges is taken over by S.

Notice that under this restriction we avoid the problem of not being able to realize functionalities
that use the knowledge of the identities of the corrupt parties in an essential way. For example,
consider the ideal functionality that lets all parties know which parties are corrupted. Then this

12-1

2

functionality cannot be realized in the face of an adversary that corrupts a single random party
but instructs that party to continue following the prescribed protocol.

All the functionalities following are standard ones.

Evaluating General Functionalities in the Semi-honest, Two-
party case

Here, we follow the [GMW87] paradigm. However, there are two differences. Firstly, [GMW87]
considers static adversaries whereas we consider adaptive adversaries. This only makes a difference
in the oblivious transfer protocol, but still the proof of security is significantly different. The
second difference is that [GMW87] considers function evaluation, whereas we consider more general
reactive functionalities where parties may receive new inputs during the protocol execution and
each new input may depend on the current adversarial view of the system. This only makes a small
difference to the construction.

Since we are talking about standard functionalities in which the shell is merely an interface,
we will deal with the core only. Let F be an ideal two-party functionality and P0, P1 be the
participating parties.

Preliminary step: Represent the ideal functionality F as a Boolean circuit.

Before we can start to construct a protocol that UC-realizes F , we first represent (the core of)
F via a family CF of boolean circuits (the k-th circuit in the family describes an activation of
F when the security parameter is set to k). Following [GMW87], we use arithmetic circuits
over GF(2) where the operations are addition and multiplication modulo 2.

There are five types of input lines: inputs of P0, inputs of P1, inputs of S, random inputs,
and local-state inputs. There are four types of output lines: outputs to P0, outputs to P1,
outputs to S, and the local state for the next activation.

Step 1: Input sharing. When Pi is activated with new input, it notifies P1−i and does the
following: Firstly it shares each input bit b with P1−i by sending b1−i ←R {0, 1} to P1−i and
keeping bi = b + b1−i. Secondly, for each random input line, it chooses ri ←R {0, 1}. The
shares of the input lines of P1−i are set to 0.

In addition, Pi has its share si of each local state line s from the previous activation. (Initially,
these shares are set to 0.) Pi’s shares of the adversary input lines are set to 0. When Pi is
activated by notification from P1−i it proceeds as above, except that it sets its inputs to be
0. Note that at this point, the values of all input lines to the circuit are shared between the
parties.

Step 2: Evaluating the circuit. Let a, b denote the input values of the gate, and let c denote
the output value. So Pi holds bits ai and bi (whereas P1−i holds bits a1−i and b1−i, such that
a = ai + a1−i and b = bi + b1−i). The parties evaluate the circuit gate by gate, so that the
output value of each gate is shared between the parties, as follows.

•	 Addition gates: we want to perform the computation a + b = c in a shared manner, i.e.
so that Pi holds ci and P1−i holds c1−i such that ci + c1−i = c. Since Pi has ai and bi, it
simply computes ci = ai + bi. (Since a0 + a1 = a and b0 + b1 = b, we have c0 + c1 = c.)

12-2

•	 Multiplication gates: we want to perform the computation a ∗ b = c in a shared manner,
i.e. so that Pi holds ci and P1−i holds c1−i such that ci + c1−i = c. P0 and P1 use F4

OT

as follows: P0 chooses c0 at random, and plays the sender with input:

v00 = a0b0 + c0, v01 = a0(1 − b0) + c0, v10 = (1 − a0)b0 + c0, v11 = (1 − a0)(1 − b0) + c0.

P1 plays the receiver with input (a1, b1), and sets the output to be c1. It is easy to verify
that indeed c0 + c1 = (a0 + a1)(b0 + b1).

Step 3: Output generation Once all the gates have been evaluated, each output value is shared
between the parties. Then:

•	 P1−i sends to Pi its share of the output lines assigned to Pi.

•	 Pi reconstructs its outputs and outputs them.

•	 Pi keeps its share of each local-state line (and will use it in the next activation).

•	 Outputs to the adversary are ignored 1 .

Theorem 1. Let F be a standard ideal functionality. Then the above protocol realizes F in the
FOT -hybrid model for semi-honest, adaptive adversaries.

Note that the theorem holds unconditionally. In fact, it holds even if the environment and the
adversary are computationally unbounded. (But of course, computational assumptions are required
for UC-realizing the oblivious transfer functionality.)

Proof. (very rough sketch): For any real-life adversary A, we construct an ideal adversary S that
fools all environments Z. In fact, the simulation will be unconditional and perfect (i.e., Z’s views
of the two interactions will be identical):

•	 The honest parties obtain the correct function values as in the ideal process.

•	 P0 sees only random shares of input values, plus its outputs. This is easy to simulate.

•	 P1 receives in addition also random shares of all intermediate values (from FOT). This is also
easy to simulate.

•	 Upon corruption, it is also easy to generate local state.

Remarks: There is a protocol [Yao86] that works in a constant number of rounds. The theorem
can be proven for static adversaries, and it also works for adaptive adversaries with erasures.

Open: what about adaptive adversaries without erasures? Is there a general construction with
constant number of rounds in this case?

thus, we effectively prevent the ideal-model adversary from utilizing its capability of sending and receiving
messages. This simplifies the construction, and only strengthens the result

12-3

1

3 Protocol Compilation

Now that we have a protocol secure against semi-honest adversaries we move on to constructing a
general compiler that transforms protocols secure against semi-honest adversaries to “equivalent”
protocols secure against Byzantine adversaries.

3.1 Review of the GMW Compiler

We want to force the malicious parties to follow the protocol specification. Let us first briefly review
the GMW compiler. In summary, the GMW compiler has three components: input commitment,
coin-tossing and protocol emulation (where the parties prove that their steps are according to the
protocol specification):

•	 Parties commit to inputs.

•	 Parties commit to uniform random tapes using secure coin-tossing, which ensures uniformity.
Note that a simple coin-tossing protocol in which both parties receive the same uniformly
distributed string is not sufficient here. This is because the parties’ random tapes must
remain secret. Instead, an augmented coin-tossing protocol is used, where one party receives
a uniformly distributed string (to be used as its random tape) and the other party receives a
commitment to that string.

•	 Protocol emulation: Run the original protocol Q, and in addition the parties use zero-
knowledge protocols to prove that they follow the protocol. That is, each message of Q
is followed be a ZK proof of the NP statement 2:

“There exist input x and random input r that are the legitimate openings of the
commitments I sent above, and such that the message I just sent is a result of
running the protocol on x, r, and the messages received so far”.

The key point is that, due to the soundness of the proofs, even a malicious adversary cannot
deviate from the protocol specification without being detected. Therefore, in effect the ad
versary is limited to semi-honest behavior by the commitments to the random tape and to
the inputs. Furthermore, since the proofs are zero-knowledge, nothing “more” is revealed in
the compiled protocol than in the basic protocol. We thus conclude the security of the com
piled protocol (against malicious adversaries) directly from the security of the basic protocol
(against semi-honest adversaries).

3.2 Constructing a UC “GMW Compiler”

The näıve approach to solution is to take the same compiler, but use universally composable
commitments, coin-tossing, and zero-knowledge as sub-protocols.

The problem with this näıve idea is that if ideal commitment is used, there is no commitment
string to prove statements on! This is because the receiver of a universally composable commitment

2Observe that a protocol specification is a deterministic function of a party’s view consisting of its input, random
tape and messages received so far. Further observe that each party holds a commitment to the input and random
tape of the other party and that the messages sent so far are public. Therefore, the assertion that a new message
is computed according to the protocol is an NP statement (and the party sending the message knows an adequate
NP-witness to it)

12-4

receives no information about the value that was committed to. (Instead, the recipient receives
only a formal “receipt” assuring it that a value was committed to.) Thus, there is no NP-statement
that a party can prove relative to its input commitment. This is in contrast to the GMW protocol
where standard (perfectly binding) commitments are used and thus each party holds a string that
uniquely determines the other partys input and random tape.

To get around this problem, first observe that in GMW the use of the commitment scheme is
not standard. Specifically, although both parties commit to their inputs etc., they never decommit.
Rather, they prove NP-statements relative to their committed values. Thus, a natural primitive to
use would be a “commit-and-prove” functionality, which is comprised of two phases. In the first
phase, a party “commits” (or is bound) to a specific value. In the second phase, this party proves
NP-statements in zero-knowledge relative to the committed value. This notion is implicit in the
work of [GMW87], and was also discussed by Kilian [Kil89]. We formulate this notion in a univer
sally composable commit-and-prove functionality, denoted FCP, and then use this functionality to
implement all three phases of the compiler.

3.2.1 The Commit and Prove Functionality FCP

The Commit and Prove functionality, FCP (which is parameterized by a relation R), with committer
C, receiver V , and an adversary S:

•	 Upon receiving (sid, C, V, “commit”, w) from (sid, C), add w to the list W of committed
values, and output (sid, C, V, “receipt”) to (sid, V) and S.

•	 Upon receiving (sid, C, V, “prove”, x) from (sid, C), send (sid, C, V, x, R(x, W)) to S. If
R(x, W) then also output (sid, x) to (sid, V).

Note that V is assured that the value x it received in step 2 stands in the relation with the list
W that C provided earlier, and C is assured that V learns nothing in addition to x and R(x, W).
As in the case of FZK, the FCP functionality is defined so that only correct statements (i.e., values
x such that R(x, w) = 1) are received by V in the prove phase. Incorrect statements are ignored
by the functionality, and the receiver V receives no notification that an attempt at cheating in a
proof took place (this is done for simplicity; error messages could have been added instead).

We now show how to UC-realize FCP in the FZK-hybrid model, i.e. in a hybrid model with
ideal access to an ideal zero-knowledge functionality, FZK

3 . Essentially, in the commit phase of
the commit-and-prove protocol, the committer commits to its input value w using some standard
commitment scheme, and in addition it proves to the receiver, using FZK with an appropriate
relation, that it “knows” the committed value. In the prove phase, where the committer wishes to
assert that the committed value w stands in relation R with some public value x, the committer
presents x and w to FZK again- but this time the relation used by FZK asserts two properties: first
that R(x, w) holds, and second that w is the same value that was previously committed to.

Specifically, if we have COM , a perfectly binding, non-interactive commitment scheme, then
the protocol for realizing FR in the FZK-hybrid model is as follows:

CP

•	 To commit to w, (sid, C) computes a = COM(w, r), adds w to the list W , adds a to the list
A, adds r to the list R, and sends (sid, C, V, “prove”, a, (w, r)) to FRc

ZK
, where

Rc = {(a, (w, r)) : a = COM(w, r)}.

3Functionality FZK expects to receive a statement x and a witness w from the prover. It then forwards x to the
verifier, together with an assertion whether R(x, w) holds, where R is a predetermined relation.

12-5

�

� �

�

• Upon receiving (sid, C, V, a, 1) from FR , () adds to the list , and outputs (sid, V A sid, C, V, c a
ZK

“receipt”).

Rp , where
ZK

• To give x and prove R(x, W), (sid, C) sends (sid, C, V, “prove”, (x, A), (W, R)) to F

Rp = (x, A), (W, R) : W = w1, ..., wn, A = a1, ..., an, R = r1, ..., rn, R(x, W),

and ai = COM(ri, wi) for all i

p , () verifies that agrees with its local list sid, V A
ZK

, and if so outputs (). A sid, C, V, x

R
• Upon receiving (sid, C, V, (x, A), 1) from F

Theorem 2. The above protocol realizes FCP in the FZK-hybrid model for non-adaptive adversaries
(assuming the security of COM).

Proof. For any A, construct an S that fools all Z. As usual, S runs A. There are two different
cases to analyze depending on which party is corrupted.

In the case of a corrupted committer, intuitively S must be able to extract the decommitment
value w from A during the commit phase of the protocol simulation. This is because, in the ideal
process, S must explicitly send the value w to FCP (and must therefore know the value being
committed to). Fortunately, this extraction is easy for S to do because A works in the FZK-hybrid
model, and any message sent by A to FZK is seen by S during the simulation. In particular, S

, and this message is valid only if it explicitly c

ZK
obtains the ZK-proof message sent by A to FR

contains the decommitment.
c .

ZK
to FR

holds (i.e. a = COM(w, r)) then S inputs (sid, C, V, “commit”, w) to FR
CP

. In the prove phase, S
In the commit phase S obtains from A the message (sid, C, V, “prove”, a, (w, r))
 If Rc

p .
ZK

R

(sid, C, V, “prove”, x) to FR
CP

.

In the case of a corrupted verifier, in the commit phase, S obtains from FR

CP
a (sid, C, V, “receipt”)

obtains from A the message (sid, C, V, “prove”, (x, A), (W, R)) to F If Rp holds then S inputs

, where c a
ZK

message, and simulates for A the message (sid, C, V, a) from FR

mitment to 0 instead of the corresponding witness is the only difference between simulated and real
executions). In the prove phase, S obtains from FR

CP
a (sid, C, V, “prove”, x) message, and simu

= COM(0, r) (this com

p , where is the list of simulated commitments A
ZK

R
lates for A the message (sid, C, V, (x, A)) from F
generated so far.

Analysis of S: in the case of a corrupted committer, the simulation is perfect (this is due to
the fact that the commitment is perfectly binding 4). In the case of a corrupted verifier, the only
difference between the simulated and real executions is that in the simulation the commitment is
to 0 rather than to the witness. Thus, if Z distinguishes then we can construct an adversary that
breaks the hiding property of the commitment.

The above protocol fails in the case of adaptive adversaries (even erasing will not help; if the
randomness used to commit to some w is erased after the commitment is generated, then later
the committer cannot prove that the commitment really corresponds to w). But one can prove
adaptive security given that the commitment COM is equivocal, i.e. a simulator (having access to

if the commitment were not binding, then w in the commit phase versus the prove phase could be different,
defeating the whole purpose of defining this commit and prove primitive, which was to prove (in ZK) statements
regarding the committed values.

12-6

4

� �

� �

some trapdoor information) can generate a commitment c such that given any w at a later stage,
it can find some randomness rw such that c = COM(w, rw), and therefore open the commitment
in both ways.

Whether FCP can be realized unconditionally in the FZK-hybrid model is still an open problem.

3.2.2 The Compiler in the FCP -hybrid Model

Informally, the protocol compiler uses the “commit” phase of FCP in order to execute the input and
coin-tossing phases of the compiler. The “prove” phase of FCP is then used to force the adversary
to send messages according to the protocol specification and consistent with the committed input
and the random tape resulting from the coin-tossing. The result is a universally composable analog
to the GMW compiler. We remark that in the FCP-hybrid model the compiler is unconditionally
secure against adaptive adversaries, even if the adversary and the environment are computationally
unbounded.

Let P = (P0, P1) be a protocol. (Intuitively, we think of P as a protocol designed to work
against semi-honest adversaries. But formally P is any arbitrary protocol.) Construct the compiled
protocol Q = C(P). Protocol Q uses two copies of FCP, where in the i-th copy Qi is the prover.
Q0 Proceeds as follows: (Q1’s code is analogous.)

1. Committing to Q0’s randomness (done once at the beginning): Q0 chooses random r0 and
sends (sid.0, Q0, Q1, “commit”, r0) to FCP. Q0 receives r1 from Q1, and sets r = r0 + r1.

2. Committing to Q1’s randomness (done once at the beginning): Q0 receives (sid.1, Q1, Q0, “receipt”)
from FCP and sends a random value s0 to Q1.

3. (a) Receiving the i-th new input, x: Q0 sends (sid.0, Q0, Q1, “commit”, x) to FCP.

(b) In addition, let M be the list of messages received so far. Q0 runs the protocol P

on input x, random input r, and messages M , and obtains either a local output value, in
which case it simply output this value, or an outgoing message m, in which case it sends
(sid.0, Q0, Q1, “prove”, m) to FCP , where the relation is

RP = (m, M, r1), (x, r0) : m = P0(x, r0 + r1, M) .

4. Receiving the i-th message, m: Q0 receives (sid.1, Q1, Q0, “prove”, (m, M, s0)) from FCP . It
verifies that s0 is the value sent in Step 2, and that M is the set of messages sent to Q1. If
so, then run P0 on incoming message m and continue as in Step 3(b).

Theorem 3. Let P be a two-party protocol. Then the protocol Q = C(P), run with Byzan
tine adversaries, emulates protocol P , when run with semi-honest adversaries. That is, for any
Byzantine adversary A there exists a semi-honest adversary S such that for any Z we have:

FCP ExecP,S,Z ≈ Exec
Q,A,Z

Corollary 4. If protocol P securely realizes F for semi-honest adversaries then Q = C(P) securely
realizes F in the FCP -hybrid model for Byzantine adversaries.

Proof. The proof is omitted here, but it is pretty straightforward. Both the theorem and the
corollary hold for the case of adaptive adversaries and for the case of static adversaries. The proof
is unconditional and the simulation is perfect. It is essential in the proof that S be able to change
the inputs to parties. (Indeed, recall that we use the variant of the semi-honest model where the
adversary can change the inputs.)

12-7

�	 �

� � �	 � �

� �	 � �

� �	 �

4 Extension to the Multiparty Case

We now describe how the two-party construction above is extended to the setting of multi-party
computation, where any number of parties may be corrupt. Recall that in this setting, each set of
interacting parties is assumed to have access to an authenticated broadcast channel. The outline
of our construction is as follows. Similarly to the two-party case, we first construct a multi-party
protocol that is secure against semi-honest adversaries (as above, this protocol is essentially that of
GMW). Then, we construct a protocol compiler (again, like that of GMW), that transforms semi-
honest protocols into ones that are secure even against malicious adversaries. This protocol compiler
is constructed using a one-to-many extension of the commit-and-prove functionality, denoted F1:M .

CP

(In the one-to-many extension, a single party commits and proves to many receivers/verifiers.) The
extension of the protocol that UC-realizes two-party FCP to a protocol that UC-realizes one-to-many
F1:M involves one-to-many extensions of FZK and FCOM as well.

CP

4.1	 Extension to the Multiparty Case: The Semi-honest Protocol (fixed set of
n parties)

Here we consider the case where the set of parties participating is fixed, and every party knows
each other party. For instance, we could have a preliminary round of “neighbor discovery” in which
each party agrees on the participants of the protocol.

The only differences between such a protocol and the protocol for two parties are as follows:

•	 Each party shares its input among all parties: x = x1+, ..., +xn.

•	 Each random input, local state value is shared among all parties in the same way.

•	 Evaluation of addition gates is done locally by each party as before. Since (a1+, ..., +an) +
(b1+, ..., +bn) = (a1 + b1)+, ..., +(an + bn), the output is shared correctly.

•	 Evaluation of multiplication gates is done as follows: each pair i < j of parties engage in
evaluating the same OT, where they obtain shares ci, cj such that ci + cj = (ai + aj)(bi + bj).
Each party sums its shares of all the OT’s. Iff n is odd then party Pi also adds aibi to the
result 5

•	 Output stage: All parties send to Pi their shares of the output lines assigned to Pi.

4.2	 Extension to the Multiparty Case: Byzantine Adversaries

We have to extend all the functionalities (commitments, ZK, commit and prove) to the case of
multiple verifiers (i.e., 1-to-many commitments, ZK, commit and prove). Note that we cannot
simply use the two-party analogues, otherwise say a party might be proving different things to
different parties.

5this is because for a fixed i, as we range over all the pairs i < j, we would get (n− 1) − 1 extra terms of the form
aibi + ajbj ; iff n is odd then n − 2 is odd, so Pi has to add an extra aibi to nullify the effect. (if n is even then we
need to do nothing. This is so since we are working in GF(2), i.e. adding the same term any even number of times
has no effect); ajbj will be taken care of by Pj . To see this explicitly, let cij be the share of the OT obtained by
Pi when interacting with Pj and di be the end result obtained by Pi (so di =

j
cij if n is odd; di = cij + aibij

if n is even). We want di = (ai)(bi). But the righthand-side is (aibj + ajbi) =
i i i	 i

aibi +
1≤i<j≤n

(1 − (n − 1)) (ai + aj)(bi + bj) = n	 (ai + aj)(bi + bj), which when n is odd
i
aibi +

1≤i<j≤n	 i
aibi +

1≤i<j≤n

simplifies to	 (ai + aj)(bi + bj) and when n is even simplifies to
1≤i<j≤n

(ai + aj)(bi + bj). i
aibi +

1≤i<j≤n

12-8

Then we have to realize these functionalities, using a broadcast channel (modelled as an ideal
functionality, FBC), which in turn can be realized in an asynchronous network with any number of
faults, via a simple “two-round echo” protocol, as follows:

1. When a party Pi gets some input (“broadcast”, x), it broadcasts the input x to everyone.

2. Upon receiving a value xj from Pi, party Pj sends the value xj that it received to all other
parties.

3. Party Pj waits to receive a message from every party other than Pi. Denote the message

received from Pk by xk
j . Then, Pj outputs (broadcast, Pi, x

j) iff for every k it holds that
j

x = xj . Otherwise, it outputs nothing. k

Note that the ideal broadcast functionality does not guarantee delivery of messages, nor does it
provide any synchrony guarantees for the messages that are delivered. It only guarantees that no
two uncorrupted parties in P will receive two different message with the same sid (this protocol is
analyzed in [GL02].

4.3 Example: The 1:M commitment functionality, F1:M
CP

The first step in realizing F1:M is to construct one-to-many extensions of universal commitments
CP

and zero-knowledge. In a one-to-many commitment scheme, all parties receive the commitment
(and the committer is bound to the same value for all parties). F1:M is defined as follows:

COM

1. Upon receiving (sid, C, V1, ..., Vn, “commit”, x) from (sid, C), do:

• Record x

• Output (sid, C, V1, ..., Vn, “receipt”) to (sid, V 1), ..., (sid, Vn)

• Send (sid, C, V1, ..., Vn, “receipt”) to S

2. Upon receiving (sid, “open”) from (sid, C), do:

• Output (sid, x) to (sid, V1), ..., (sid, Vn)

• Send (sid, x) to S

• Halt.

Likewise, in one-to-many zero-knowledge, all parties verify the proof (and they either all accept
or all reject the proof). Now, any non-interactive commitment scheme can be transformed into
a one-to-many equivalent by simply having the committer broadcast its message to all parties.
However, obtaining one-to-many zero-knowledge is more involved, since we do not know how to
construct non-interactive adaptively-secure universally composable zero-knowledge. Nevertheless, a
one-to-many zero-knowledge protocol can be constructed based on the universally-composable zero-
knowledge protocol of [CF01] and the methodology of [G98] for obtaining a multi-party extension
of zero-knowledge.

To realize F1:M in the F1:M -hybrid model, we generalize the FCP protocol. As with zero-
CP ZK

knowledge, this is not straightforward because in the protocol for adaptive adversaries, the FCP

commit-phase is interactive. Nevertheless, this problem is solved by having the committer commit

12-9

to its input value w by separately running the protocol for the commit-phase of (two-party) FCP

with every party over the broadcast channel. Following this, the committer uses one-to-many
zero-knowledge to prove that it committed to the same value in all of these commitments. (Since
each party views the communication from all the commitments, every party can verify this zero-
knowledge proof.) The prove phase is similar to the two-party case, except that the one-to-many
extension of zero-knowledge is used (instead of two-party zero-knowledge). Finally, we note that,
as in the two-party case, a multi-party protocol compiler can be constructed in the F1:M

CP
-hybrid

model in a straightforward way, with no further assumptions.
Lastly, we remark that in the case of an honest majority, we can actually do without the CRS.

This is because if we have an honest majority then we can realize F1:M
COM

in the plain model, using
known VSS (Verifiable Secret Sharing) protocols, e.g., the ones in [BGW88].

References

[BGW88] M. BenOr, S. Goldwasser, and A. Wigderson. Completeness theorems for noncrypto
graphic fault-tolerant distributed computation. ACM STOC, pages 1–10, 1988.

[CF01]	 R. Canetti and M. Fischlin. Universally Composable Commitments. In CRYPTO01,
Springer-Verlag (LNCS 2139), pages 19V40, 2001.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally Composable Two-Party
and Multi-Party Secure Computation. In Proc. 34th STOC, pp. 494-503.

[G98] O. Goldreich. Secure Multi-Party Computation. Manuscript. Preliminary version, 1998.

[GL02] S. Goldwasser and Y. Lindell. Secure Computation Without Agreement. In 16th
DISC, Springer-Verlag (LNCS 2508), pp. 17-32, 2002. Full version available at
http://www.research.ibm.com/people/l/lindell/.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson, How to play any mental game, in Pro
ceedings of the 19th Symposium on the Theory of Computing, New York, 1987, pp.
218-229.

[Kil89]	 J. Kilian. Uses of Randomness in Algorithms and Protocols. The ACM Distinguished
Dissertation 1989, MIT press.

[Yao86]	 A.C. Yao. How to generate and exchange secrets, in Proceedings of the 27th Symposiu
mon Foundations of Computer Science, Toronto, Ontario, Canada, 1986, pp. 162V167.

12-10

