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MIT 6.972 Algebraic techniques and semidefinite optimization February 28, 2006 

Lecture 6 
Lecturer: Pablo A. Parrilo Scribe: ??? 

Last week we learned about explicit conditions to determine the number of real roots of a univariate 
polynomial. Today we will expand on these themes, and study two mathematical objects of fundamental 
importance: the resultant of two polynomials, and the closely related discriminant. 

The resultant will be used to decide whether two univariate polynomials have common roots, while 
the discriminant will give information about the existence of multiple roots. Furthermore, we will see the 
intimate connections between discriminants and the boundary of the cone of nonnegative polynomials. 

Besides the properties described above, a direct consequence of their definitions, there are many 
other interesting applications of resultants and discriminant. We describe a few of them below, and we 
will encounter them again in later lectures, when studying elimination theory and the construction of 
cylindrical algebraic decompositions. For much more information about resultants and discriminants, 
particularly their generalizations to the sparse and multipolynomial case, we refer the reader to the very 
readable introductory article [Stu98] and the book [CLO97]. 

Resultants 

Consider two polynomials p(x) and q(x), of degree n, m, respectively. We want to obtain an easily 
checkable criterion to determine whether they have a common root, that is, there exists an x0 ∈ C for 
which p(x0) = q(x0) = 0. There are several approaches, seemingly different at first sight, for constructing 
such a criterion: 

•	 Sylvester matrix: If p(x0) = q(x0) = 0, then we can write the following (n+ m) × (n+ m) linear 
system: ⎤⎡ ⎡ ⎤pn pn−1 . . . p1 p0 m−1 

0p(x0)x⎡ ⎤ n+m−1 
0 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

. . . x m−2 
0 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

p(x0)x . . .. . .p n+m−2 
0 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

n x . . . 

qm qm−1 . . . q0 

. . . 
p(x0)x0 

p(x0) 
n−1 q(x0)x0 
n−2 q(x0)x0 

. . . 
q(x0)x0 

. . . 
nx0 

p1 p0 

p2 p1 p0 n−1 
0 = 0.=x 

. . .. .. .. .qm 

. . . x0 

1q1 q0 q(x0)q2 q1 q0 

This implies that the matrix on the left­hand side, called the Sylvester matrix Sylx(p, q) associated 
to p and q, is singular and thus its determinant must vanish. It is not too difficult to show that 
the converse is also true; if det Sylx(p, q) = 0, then there exists a vector in the kernel of Sylx(p, q) 
of the form shown in the matrix equation above, and thus a common root x0. 

•	 Root products and companion matrices: Let αj , βk be the roots of p(x) and q(x), respectively. 
By construction, the expression 

n m

(αj − βk) 
j=1 k=1 

vanishes if and only if there exists a root of p that is equal to a root of q. Although the computation 
of this product seems to require explicit access to the roots, this can be avoided. Multiplying by 
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a convenient normalization factor, we have: 
n m n

m n m m pn q (αj − βk ) = p q(αj ) = p det q(Cp)m n n 
j=1 k=1 j=1 

(1)
m

n n= (−1)nm q p(βk ) = (−1)nm q det p(Cq )m m 
k=1 

• Kronecker products: Using a well­known connection to Kronecker products, we can also write 
(1) as 

m n pn q det(Cp ⊗ Im − Im n ⊗ Cq ). 

Bézout matrix • 

ToDoTo be completed 

If can be shown that all these constructions are equivalent. They define exactly the same polynomial, 
called the resultant of p and q, denoted as Resx(p, q): 

Resx(p, q) = det Sylx(p, q) 
= p m det q(Cp)n 

n= (−1)nm q det p(Cq )m 
m= pn q n det(Cp ⊗ Im − Im n ⊗ Cq ). 

The resultant is a homogeneous multivariate polynomial, with integer coefficients, and of degree n + m 
in the n + m + 2 variables pj , qk . It vanishes if and only if the polynomials p and q have a common 
root. Notice that the definition is not symmetric in its two arguments, Resx(p, q) = (−1)nmRes(q, p) (of 
course, this does not matter in checking whether it is zero). 

Remark 1. To compute the resultant of two polynomials p(x) and q(x) in Maple, you can use the 
command resultant(p,q,x). In Mathematica, use instead Resultant[p,q,x]. 

Discriminants 

As we have seen, the resultant allow us to write an easily checkable condition for the simultaneous 
vanishing of two univariate polynomials. Can we use the resultant to produce a condition for a polynomial 
to have a double root? Recall that if a polynomial p(x) as a double root at x0 (which can be real or 
complex), then its derivative p�(x) also vanishes at x0. Thus, we can check for the existence of a double 
root by computing the resultant betweeen a polynomial and its derivative. 

Definition 2. The discriminant of a univariate polynomial p(x) is defined as 

1
Disx(p) := (−1)n(n−1)/2 Resx p(x), 

dp(x) 
. 

pn dx 

Similar to what we did in the resultant case, the discriminant can also be obtained by writing a 
natural condition in terms of the roots αi of p(x): 

Disx(p) = p 2n−2 (αj − αk )2 .n 
j<k 

If p(x) has degree n, its discriminant is a homogeneous polynomial of degree 2n−2 in its n+1 coefficients 
pn, . . . , p0. 
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Example 3. Consider the quadratic univariate polynomial p(x) = ax2 + bx + c. Its discriminant is: 

1
Disx(p) = − Resx(ax 2 + bx + c, 2ax + b) = b2 − 4ac. 

a 

For the cubic polynomial p(x) = ax3 + bx2 + cx + d we have 

2 3Disx(p) = −27a 2d2 + 18adcb + b2 c − 4b3d − 4ac . 

3 Applications 

3.1 Polynomial equations 

One of the most natural applications of resultants is in the solution of polynomial equations in two 
variables. For this, consider a polynomial system 

p(x, y) = 0, q(x, y) = 0, (2) 

with only a finite number of solutions (which is generically the case). Consider a fixed value of y0, and 
the two univariate polynomials p(x, y0), q(x, y0). If y0 corresponds to the y­component of a root, then 
these two univariate polynomials clearly have a common root, hence their resultant vanishes. 

Therefore, to solve (2), we can compute Resx(p, q), which is a univariate polynomial in y. Solving 
this univariate polynomial, we obtain a finite number of points yi. Backsubstituting in p (or q), we 
obtain the corresponding values of xi. Naturally, the same construction can be used by computing first 
the univariate polynomial in x given by Resy (p, q). 

3 3 2 2Example 4. Let p(x, y) = 2xy + 3y − 2x − x − 3x y2 , q(x, y) = 2x2y2 − 4y3 − x2 + 4y + x y. The 
resultant (in the x variable) is 

8 6 4Resx(p, q) = y(y + 1)3(72y − 252y 7 + 270y − 145y 5 + 192y − 160y 3 + 28y + 4). 

One particular root of this polynomial is y� ≈ 1.6727, with the corresponding value of x� ≈ −1.3853. 

3.2 Implicitization of rational curves 

ToDoTo be completed 

3.3 Random matrices 

ToDoTo be completed 

The set of nonnegative polynomials 

One of the main reasons why nonnegativity conditions about polynomials are difficult is because these 
sets can have a quite complicated structure, even though they are always convex. 

Recall from last lecture that we have defined Pn ⊂ Rn+1 as the set of nonnegative polynomials of 
degree n. It is easy to see that if p(x) is in the boundary of the set Pn, then it must have a real root, 
of multiplicity at least two. Indeed, if there is no real root, then p(x) is in the strict interior of P 
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Figure 1: The shaded region corresponds to the polynomial x4 + 2ax2 + b being nonnegative. The 
numbers indicate how many real roots p(x) has. 
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Figure 2: Region of nonnegativity of the polynomial x4 + 4ax3 + 6bx2 + 4ax + 1, and number of real 
roots. 

(small enough perturbations will not create a root), and if it has a simple real root it clearly cannot be 
nonnegative. 

Thus, on the boundary of Pn, the discriminant of p(x) must necessarily vanish. However, it turns 
out that Disx(p) does not vanish only on the boundary, but it also vanishes at points inside the set. 
Why is this? 

Example 5. Consider the univariate polynomial p(x) = x4 + 2ax2 + b. For what values of a, b does it 
hold that p(x) ≥ 0 ∀x ∈ R? Since the leading term x4 has even degree and is strictly positive, p(x) is 

2strictly positive if and only if it has no real roots. The discriminant of p(x) is equal to 256 b (a − b)2 . 

Here is a slightly different example, showing the same phenomenon. 

Example 6. As another example, consider now p(x) = x4 + 4ax3 + 6bx2 + 4ax + 1. Its discriminant, in 
factored form, is equal to 256(1 + 3b + 4a)(1 + 3b − 4a)(1 + 2a2 − 3b)2 . The corresponding nonnegativity 
region and number of real roots are presented in Figure 2. 

As we can see, this creates some difficulties. For instance, even though we have a perfectly valid 
analytic expression for the boundary of the set, we cannot have a good sense of “how far we are” from 
the boundary by looking at the absolute value of the discriminant. 

From the mathematical viewpoint, there are a couple of (unrelated?) reasons with these sets cannot 
be directly handled by “standard” optimization, at least if we want to keep the polynomial structure. 
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Figure 3: A three­dimensional convex set, described by one quadratic and one linear inequality, whose 
projection on the (a, b) plane is equal to the set in Figure 1. 

One has to do with its algebraic structure, and the other one with convexity, and in particular its facial 
structure. 

Lemma 7 (e.g., [And03]). The set described in Figure 1 is not basic closed semialgebraic. 

Remark 8. Notice that the convex sets described in Figures 1 and 2 both have an uncommon feature. 
They both have proper faces that are not exposed, i.e., they cannot be isolated by a supporting hyper­
plane1 . Indeed, in Figure 1 the origin (0, 0) is a non­exposed zero­dimensional face, while in Figure 2 
the point (1, 1) has the same property. A non­exposed face is a known obstruction for a convex set to be 
the feasible set of a semidefinite program, see [RG95].

Even though these sets have these complicating features, it turns out that we can often provide some 
“good” representations. These are normally given as a projection from higher dimensional spaces, where 
the object “upstairs” is much more smooth and well­behaved. For instance, as a graphical illustration, 
in Figure 3 we can see a three dimensional convex set, whose projection on the plane (a, b) is exactly 
the one discussed in Example 5 and Figure 1. 

The presence of “extraneous” components of the discriminant inside the feasible set is an important 
roadblock for the availability of “easily computable” barrier functions. Indeed, every polynomial that 
vanishes on the boundary of the set Pn must necessarily have the discriminant as a factor. This is an 
striking difference with the case of the case of the nonnegative orthant or the PSD cone, where the 
standard barriers are given (up to a logarithm) by products of the linear constraints or a determinant 
(which are polynomials). The way out of this problem is to produce non­polynomial barrier functions, 
either by partial minimization from a higher­dimensional barrier (i.e., projection) or using the “universal” 
barrier function introduced by Nesterov and Nemirovski. 

In this direction, there have been several research efforts that aim at directly characterizing barrier 
functions for the set of nonnegative polynomials (or related modifications). Among them, we mention 
the work of Kao and Megretski [KM02] and Faybusovich [Fay02], both of which produce barriers that 
rely on the computation of one or more integral expressions. Given the fact that these integrals must 
be computed numerically, there is no clear consensus yet on how useful this approach is in practical 
optimization problems. 

1A face of a convex set S is a convex subset F ⊆ S, with the property that x, y ∈ S, 1 
2 (x + y) ∈ F ⇒ x, y ∈ F . A face 

F is exposed if it can be written as F = S ∩ H, where H is a supporting hyperplane of S. 
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Figure 4: The discriminant of the polynomial x4 + 4ax3 + 6bx2 + 4cx + 1. The convex set inside the 
“bowl” corresponds to the region of nonnegativity. There is an additional one­dimensional component 
inside the set. 
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