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MIT 6.972 Algebraic techniques and semidefinite optimization March 14, 2006 

Lecture 10 
Lecturer: Pablo A. Parrilo Scribe: ??? 

In this lecture we begin our study of one of the main themes of the course, namely the relationships 
between polynomials that are sums of squares and semidefinite programming. 

1 Nonegativity and sums of squares 

Recall from a previous lecture the definition of a polynomial being a sum of squares. 

Definition 1. A univariate polynomial p(x) is a sum of squares (SOS) if there exist q1, . . . , qm ∈ R[x] 
such that 

m
2 p(x) = qk (x). (1) 

k=1 

If a polynomial p(x) is a sum of squares, then it obviously satisfies p(x) ≥ 0 for all x ∈ R. Thus, a 
SOS condition is a sufficient condition for global nonnegativity. 

As we have seen, in the univariate case, the converse is also true: 

Theorem 2. A univariate polynomial is nonnegative if and only if it is a sum of squares. 

As we will see, there is a very direct link between sum of squares conditions on polynomials and 
semidefinite programming. We study first the univariate case. 

Sums of squares and semidefinite programming 

Consider a polynomial p(x) of degree 2d that is a sum of squares, i.e., it can be written as in (1). Notice 
2that the degree of the polynomials qk is at most equal to d, since the highest term of each qk is positive, 

and thus there cannot be any cancellation in the highest power of x. Then, we can write ⎤⎡⎤⎡ 
q1(x) 1 ⎢⎢⎢⎣ 

q2(x) 
. . . 

⎥⎥⎥⎦ 
= V 

⎢⎢⎢⎣ 

x 
. . . 

⎥⎥⎥⎦ , (2) 

dqm(x) x

where V ∈ Rm×(d+1), and its kth row contains the coefficients of the polynomial qk . For future reference, 
let [ be the vector in the right­hand side of (2). Consider now the matrix Q = V T V . We then have x]d 

p(x) = m 2 T 
k=1 qk (x) = (V [x]d)T (V [x]d) = [x]T V T V [x]d = [x]d Qd [x]d. 

TConversely, assume there exists a symmetric positive definite Q, for which p(x) = [x]d Q[x]d. Then, by 
factorizing Q = V T V (e.g., via Choleski, or square root factorization), we arrive at a SOS decomposition 
of p. 

We formally express this in the following lemma, that gives a direct relation between positive semidef­
inite matrices and a sum of squares condition. 

Lemma 3. Let p(x) be a univariate polynomial of degree 2d. Then, p(x) is nonnegative (or SOS) if and 
d+1only if there exists Q ∈ S that satisfies + 

T p(x) = [x]d Q[x]d. 
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Indexing the rows and columns of Q by {0, . . . , d}, we have: ⎛ ⎞ 
d d 2d

T i[x]d Q[x]d = Qjkxj+k = ⎝ Qjk ⎠ x 
j=0 k=0 i=0 j+k=i 

Thus, for this expression to be equal to p(x), it should be the case that 

pi = Qjk, i = 0, . . . , 2d. (3) 
j+k=i 

This is a system of 2d + 1 linear equations between the entries of Q and the coefficients of p(x). Thus, 
since Q is simultaneously constrained to be positive semidefinite, and to belong to a particular affine 
subspace, a SOS condition is exactly equivalent to a semidefinite programming problem. 

d+1Lemma 4. A polynomial p(x) = 
�2d i is a sum of squares if and only if there exists Q ∈ Si=0 pix + 

satisfying (3). This is a semidefinite programming problem. 

3 Applications and extensions 

We discuss first a few applications of the SDP characterization of nonnegative polynomials, followed by 
several extensions. 

3.1 Optimization 

Our first application concerns the global optimization of a univariate polynomial p(x). Rather than 
focusing on computing an x� for which p(x�) is as small as possible, we attempt first to obtain a good 
(or the best) lower bound on its optimal value. It is easy to see that a number γ is a global lower bound 
of a polynomial p(x), if and only if the polynomial p(x) − γ is nonnegative, i.e., 

p(x) ≥ γ ∀x ∈ R ⇐⇒ p(x) − γ ≥ 0 ∀x ∈ R. 

Notice that the polynomial p(x) − γ has coefficients that depend affinely on γ. Consider now the 
optimization problem defined by 

max γ s.t. p(x) − γ is SOS. 

It should be clear that this is a convex problem, since the feasible set is defined by an infinite number 
of linear inequalities. Its optimal solution γ� is equal to the global minimum of the polynomial, p(x�). 
Furthermore, using Lemma 4, we can easily write this as a semidefinite programming problem. We can 
thus obtain the global minimum of a univariate polynomial, by solving an SDP problem. Notice also 

m 2that at optimality, we have 0 = p(x�) − γ� = k=1 qk(x�), and thus all the qk simultaneously vanish at 
x�, which gives a way of computing the optimal solution x�. As we shall see later, we can also obtain 
this solution directly from the dual problem, by using complementary slackness. 

Notice that even though p(x) may be hightly nonconvex, we are nevertheless effectively computing 
its global minimum. 

3.2 Nonnegativity on intervals 

We have seen how to characterize a univariate polynomial that is nonnegative on (−∞,∞) in terms of 
SDP conditions. But what if we are interested in polynomials that are nonnegative only in an interval 
(either finite, or semi­infinite)? As explained below, we can use very similar ideas, and two classical 
characterizations, usually associated to the names Pólya­Szegö, Fekete, or Markov­Lukacs. The basic 
results are the following: 
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Theorem 5. The polynomial p(x) is nonnegative on [0,∞), if and only if it can be written as 

p(x) = s(x) + x t(x), 

where s(x), t(x) are SOS. If deg(p) = 2d, then we have deg(s) ≤ 2d, deg(t) ≤ 2d− 2, while if deg(p) = 
2d + 1, then deg(s) ≤ 2d, deg(t) ≤ 2d. 

Theorem 6. Let a < b. Then, p(x) is nonnegative on [a, b], if and only if it can be written as 

p(x) = s(x) + (x− a)(b− x)t(x), if deg(p) is even 

p(x) = (x− a)s(x) + (b− x)t(x), if deg(p) is odd 

where s(x), t(x) are SOS. In the first case, we have deg(p) = 2d, and deg(s) ≤ 2d, deg(t) ≤ 2d − 2. In 
the second, deg(p) = 2d + 1, and deg(s) ≤ 2d, deg(t) ≤ 2d. 

Notice that in both of these results, one direction of the implication is evident. 

3.3 Rational functions 

What happens if we want to minimize a univariate rational function, rather than a polynomial? Consider 
a rational function given as a quotient of polynomials p(x)/q(x), where q(x) is strictly positive (why?). 
Then, we have 

p(x) 
p(x) − γ q(x) ≥ 0, 

q(x) 
≥ γ ⇔ 

and therefore we can find the global minimum of the rational function by solving 

max γ s.t. p(x) − γ q(x) is SOS. 

The constrained case (i.e., over finite or semi­infinite intervals) are very similar, and can be formulated 
using the results in the Section 3.2. The details are left for the exercises. 

4 Multivariate polynomials 

For polynomials in more than one variable, it is no longer true that nonnegativity is equivalent to a sum 
of squares condition. In fact, for polynomials of degree greater than or equal to four, deciding polynomial 
nonnegativity is an NP­hard problem (as a function of the number of variables). 

More than a century ago, David Hilbert showed that equality between the set of nonnegative and 
SOS polynomials holds only in the following three cases: 

• Univariate polynomials (i.e., n = 1) 

• Quadratic polynomials (2d = 2) 

• Bivariate quartics (n = 2, 2d = 4) 

For all other cases, there always exist nonnegative polynomials that are not sums of squares. A classical 
counterexample is the bivariate sextic (n = 2, 2d = 6) due to Motzkin, given by (in dehomogenized 
form) 

4 2 2 2M(x, y) = x y 2 + x y 4 + 1 − 3x y . 

This polynomial is nonnegative, but is not a sum of squares. We will prove both facts later. An excellent 
account of much of the classical work in this area has been provided by Bruce Reznick [Rez00]. 
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4.1 SDP formulation 

Essentially the same construction we have seen in Lemma 4 applies to the multivariate case. In this 
case, we consider polynomials of degree 2d in n variables. � In the dense case, i.e., when the polynomial 
is not sparse, the number of coefficients is equal to n+2d . If we let p(x) = α pαxα, and indexing the 2d � � 

d )matrix Q by the n+d monomials in n variables of degree d, we have the SDP conditions on Q ∈ S(n+d 

:d + 

Q � 0, pα = Qβγ . (4) 
β+γ=α 

We have exactly n+2d linear equations, one per each coefficient of p(x). As before, these conditions are 2d 
affine conditions relating the entries of Q and the coefficients of p(x). Thus, we can decide membership 
to, or optimize over, the set of SOS polynomials by solving a semidefinite programming problem. 

4.2 Using the Newton polytope 

Recall that we have defined in a previous lecture the Newton polytope of a polynomial p(x) ∈ R[x1, . . . , xn] 
as the convex hull of the set of exponents appearing in p. This allowed us to introduce a notion of 
sparseness for a polynomial, related to the size of its Newton polytope. Sparsity (in this algebraic sense) 
allows a notable reduction in the computational cost of checking sum of squares conditions of multivariate 
polynomials. The reason is the following theorem due to Reznick: 

Theorem 7 ([Rez78], Theorem 1). If p(x) = qi(x)2, then New (qi) ⊆ 1 New (p).2 

In other words, this theorem allows us, without loss of generality, to restrict the set of monomials 
appearing in the representation (4) to those in the Newton polytope of p, scaled by a factor of 1 . This 2 
reduces the size of the corresponding matrix Q, thus simplifying the SDP problem. 

Example 8. Consider the following polynomial: 

p = (w 4 + 1)(x 4 + 1)(y 4 + 1)(z 4 + 1) + 2w + 3x + 4y + 5z. 

The polynomial p has degree 2d = 16, and four independent variables (n = 4). A naive approach, along 
the lines described earlier, would require a matrix Q of size n+d = 495. However, the Newton polytope of d 
p is easily seen to be the four dimensional hypercube with vertices in (0, 0, 0, 0) and (4, 4, 4, 4). Therefore, 
the polynomials qi in the SOS decomposition of p will have at most 34 = 81 distinct monomials, and as 
a consequence the full decomposition can be computed by solving a much smaller SDP. 

5 Duality and density 

In the next lecture, we will revisit the sum of squares construction, but emphasizing this time the dual 
side, and its appealing measure­theoretic interpretation. We will also review some recent results on the 
relative density of the cones of nonnegative polynomials and SOS. 
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