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MIT 6.972 Algebraic techniques and semidefinite optimization March 21, 2006 

Lecture 12 
Lecturer: Pablo A. Parrilo Scribe: ??? 

Recovering a measure from its moments 

We review next a classical method for producing a univariate atomic measure with a given set of moments. 
Essentially similar variations of this method are often used in signal processing, e.g., Pisarenko’s harmonic 
decomposition method, where we are interested in producing a superposition of sinusoids with a given 
covariance matrix. 

Consider the set of moments (µ0, µ1, . . . , µ2n−1) for which we want to find an associated nonnegative 
measure, supported on the real line. The resulting measure will be discrete, of the form i=1 wiδ(x−xi).

n 

For this, consider the linear system ⎤⎡⎤⎡⎤⎡ 
µ0 µ1 c0 µ· · · µn−1 n ⎢⎢⎢⎣ 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

⎥⎥⎥⎦ 

⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

µ1 µ2 · · · µ c1 
. . . 

µn+1 
. . . 

n 
. (1)= −. . . . . . . ... . . 

µn−1 µn cn−1 µ2n−1· · · µ2n−2 

The Hankel matrix on the left­hand side of this equation is the one that appeared earlier as a sufficient 
condition for the moments to represent a nonnegative measure. The linear system in (1) has a unique 
solution if the matrix is positive definite. In this case, we let xi be the roots of the univariate polynomial 

x n + cn−1x + c1x + c0 = 0, n−1 + · · ·

which are all real and distinct (why?). We can then obtain the corresponding weights wi by solving the 
nonsingular Vandermonde system given by 

n
j = µj (0 ≤ j ≤ n− 1).wixi 

i=1 

In the exercises, you will have to prove that this method actually works (i.e., the xi are real and distinct, 
the wi are nonnegative, and the moments are the correct ones). 

Example 1. Let’s find a nonnegative measure whose first six moments are given by (1, 1, 2, 1, 6, 1). The 
solution of the linear system (1) yields the polynomial 

3 2 x − 4x − 9x + 16 = 0, 

whose roots are −2.4265, 1.2816, and 5.1449. The corresponding weights are 0.0772, 0.9216, and 0.0012, 
respectively. 

A probabilistic interpretation 

We also mention here an appealing probabilistic interpretation of the dual (2), commonly used in integer 
and quadratic programming, and developed by Lasserre in the polynomial case [Las01]. Consider as 
before the problem of minimizing a polynomial. Now, rather than looking for a minimizer x in Rn, let’s 
“relax” our notion of solution to allow for probabilities densities µ on Rn, and replace the ob
function by its natural generalization p(x)dµ. It clearly holds that the new objective is never larger 
than the original one, since we are making the feasible set bigger. 

This change makes the problem trivially convex, although infinite­dimensional. To produce a finite 
dimensional approximation (which may or may not be exact), we rewrite the objective function in terms 
of the moments of the measure µ, and write valid semidefinite contraints for the moments µk . 
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Duality and complementary slackness 

What is the relationship between this classical method and semidefinite programming duality? Recall 
our approach to minimizing a polynomial p(x) by computing 

max γ s.t. p(x) − γ is SOS. 

If this relaxation is exact (i.e., the optimal γ is equal to the optimal value of the polynomial) then at 
2optimality, we necessarily have p(x�) −γ� i (x�). This implies that all the gi vanish at the optimal 

point. We can thus obtain the optimal value by looking at the roots of the polynomials gi(x). 
= i g

However, it turns out that if we are simultaneously solving the primal and the dual SDPs (as most 
modern interior point solvers) this is unnecessary, since from complementary slackness we can extract 
almost all the information needed. In particular, notice that if we have 

T p(x) − γ = [x]d Q[x]d = 0 

then necessarily Q · [x]d = 0. 
Recall the SDP formulation is given by ⎧⎪⎪⎪⎨ 

max γ s.t. 

p0 − γ = Q00 

pi = Qjk i = 1, . . . , 2d ⎪⎪⎪⎩ 
j+k=i 

Q � 0 

and its dual ⎤⎡ 
µ0 µ1 · · · µd 

2d

min piµi s.t. M(µ) := 
i=0 

⎢⎢⎢⎣ 

µ1 µ2 · · · µd+1 
. . . . . . . . . . . . 

⎥⎥⎥⎦ � 0, µ0 = 1. (2) 

µd µd+1 · · · µ2d 

At optimality, complementarity slackness holds, i.e., the product of the primal and dual matrices 
vanishes. We have then M(µ) ·Q = 0. Assume that the leading k ×k submatrix of M(µ) is nonsingular. 
Then, the procedure described in Section 1 gives a k­atomic measure, with support in the minimizers 
of p(x). Generically, this matrix M(µ) will be rank one, which will correspond to the case of a unique 
optimal solution. 

Remark 2. Unlike the univariate case, a multivariate polynomial that is bounded below may not achieve 
its minimum. A well­known example is p(x, y) = x2 + (1 −xy)2 , which clearly satisfies p(x, y) ≥ 0. Since 
p(x, y) = 0 would imply x = 0 and 1 − xy = 0 (which is impossible), this value cannot be achieved. 
However, we can get arbitrarily close, since p(�, 1/�) = �2 , for any � > 0. 

Multivariate case 

We have seen previously that in the multivariate case, it is no longer the case that nonnegative poly­
nomials are always sums of squares. The corresponding result on the dual side is that the set of valid 
moments is no longer described by the “obvious” semidefinite constraints, obtained by considering the 
expected value of squares (even if we require strict positivity). 

Example 3 (“Dual Motzkin”). Consider the existence of a probability measure on R2 , that satisfies the 
moment constraints: 

E[1] = E[X4Y 2] = E[X2Y 4] = 1, 

E[X2Y 2] = 2, (3) 

E[XY ] = E[XY 2] = E[X2Y ] = E[X2Y 3] = E[X3Y 2] = E[X3Y 3] = 0. 
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The “obvious” nonnegativity constraints are satisfied, since 

E[(a + bXY + cXY 2 + dX2Y )2] = a 2 + 2b2 + c 2 + d2 ≥ 0. 

However, it turns out that these conditions are only necessary, but not sufficient. This can be seen by 
computing the expectation of the Motzkin polynomial (which is nonnegative), since in this case we have 

E[X4Y 2 + X2Y 4 + 1 − 3X2Y 2] = 1 + 1 + 1 − 6 = −3, 

thus proving that no measure with the given moments can exist. 

Density results 

Recent results by Blekherman [Ble04] give quantitative bounds on the relative density of the cone of 
sum of squares versus the cone of nonnegative polynomials. Concretely, in [Ble04] it is proved that a 
suitably normalized section of the cone of positive polynomials P̃n,2d satisfies 

1 
DMVol P̃n,2d ≤ c2n

−≤ 
Vol BM 

1 1 
c1n

− 2 2 , 

while the corresponding expression for the section of the cone of sum of squares Σ̃n,2d is 

1 
DMVol Σ̃n,2d 

c3n
− d 

2 ≤ ≤ c4n
− d 

2 ,
Vol BM 

where c1, c2, c3, c4 depend on d only (explicit expressions are available), DM = n+2d − 1, and BM is2d 
the unit ball in RDM . 

These expressions show that for fixed d, as n →∞ the volume of the set of sum of squares becomes 
vanishingly small when compared to the nonnegative polynomials. 

ToDoShow the values of the actual bounds, for reasonable dimensions 
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