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Lecture 14 
Lecturer: Pablo A. Parrilo Scribe: ??? 

After a brief review of monomial orderings, we develop the basic ideas of Groebner bases, followed 
by examples and applications. For background and much more additional material, we recommend the 
textbook of Cox, Little, and O’Shea [CLO97]. Other good, more specialized references are [AL94, BW93,
KR00].

Monomial orderings 

Recall from last lecture the notion of a monomial ordering: 

Definition 1. A monomial ordering on C[x] is a relation � on Zn (i.e., the monomial exponents), such + 
that: 

1. The relation � is a total ordering. 

2. If α � β, and γ ∈ Zn 
+, then α + γ � β + γ. 

3. The relation � is a well­ordering (every nonempty subset has a smallest element). 

There are several term orderings of interest in computational algebra. Among them, we mention: 

•	 Lexicographic (“dictionary”). Here α �lex β if the left­most nonzero entry of α − β is positive. 
Notice that a particular order of the variables is assumed, and by changing this, we obtain n! 
nonequivalent lexicographic orderings. 

•	 Graded lexicographic. Sort first by total degree, then lexicographic, i.e., α �grlex β if α > β , or 
if |α| = β and α �lex β. 

| | | |
| | 

• Graded reverse lexicographic. Here α �grevlex β if α > β , or if α = β and the right­most | | | | | | | |
nonzero entry of α − β is negative. This ordering, although somewhat nonintuitive, has some 
desirable computational properties. 

•	 General matrix orderings. Described by a weight matrix W ∈ Rk×n(k ≤ n), where α �W β if 
(W α) �lex (W β). For W to correspond to a monomial ordering as defined, the first nonzero entry 
on each column must be positive. 

It turns out that every monomial ordering can be described by an associated matrix W , i.e., every 
monomial ordering is a matrix ordering. What are the matrices corresponding to the first three orderings 
described? 

Example 2. Consider the polynomial ring C[x, y]. In the lexicographic ordering (�lex) discussed, we 
have: 

2	 2 2 2 2 21 � y � y	 � x y � x y� · · · � x � xy � xy � · · · � x � · · · , 
while for the other two orderings (�grlex and �grevlex), which in the special case of two variables coincide, 
we have: 

2 2 3 2 2 31 � y � x � y � xy � x � y � xy � x y � x � · · · . 

orderings ToDoPicture comparing different 

9	 2Example 3. Consider the monomials α = x3y2z8 and β = x2y z . If the variables are ordered as 
(x, y, z), we have 

α �lex β, α �grlex β, α �grevlex β. 

Notice that x � y � z for all three orderings. 
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2 Groebner bases 

2.1 Monomial ideals 

Before studying general ideals, it is convenient to introduce first a special class, known as monomial 
ideals. 

Definition 4. A monomial ideal is a polynomial ideal that can be generated by monomials. 

α α+βWhat are the possible monomials that belong to a given monomial ideal? Since x ∈ I x ∈ I 
for β ≥ 0, we have that these sets are “closed upwards.” 

⇒

ToDoPicture of monomial ideals 

Furthermore, a polynomial belongs to a monomial ideal I if and only if it all its terms are in I. 

Theorem 5 (Dickson’s lemma). Every monomial ideal is finitely generated. 

We consider next a special monomial ideal, associated to every polynomial ideal I. From now on, we 
assume a fixed monomial ordering (e.g., graded reverse lexicographic), and denote by in(f) the “largest” 
monomial appearing in the polynomial f = 0. �

Definition 6. Consider an ideal I ⊂ C[x], and a fixed monomial ordering. The initial ideal of I, 
denoted in(I), is the monomial ideal generated by the leading terms of all the elements in I, i.e., 

in(I) := �in(f) : f ∈ I \ {0}�. 

A monomial xα is called standard, if it does not belong to the initial ideal in(I). 

2.2 Groebner bases 

Given an ideal I = �f1, . . . , fs�, we can construct two monomial ideals associated with it. On the one 
hand, we have the initial ideal in(I), previously defined. However, we can also consider the monomial 
ideal generated by the initial monomials of the generators, i.e., �in(f1), . . . , in(fs)�. Although we always 
have �in(f1), . . . , in(fs)� ⊂ in(I), in general these two monomial ideals are distinct. 

1Example 7. Consider the ideal I = x3 − 1, x2 + 1�. Since 1 = 1 
2 (x− 1)(x3 − 1) − 2 (x

2 −x− 1)(x2 + 1),�
3 2we have 1 ∈ I, and thus in(I) = I = C[x]. On the other hand, 1 �∈ �x , x . 

However, it may be possible to produce a set of generators for which these two ideals are the same. 
This is exactly the notion of a Groebner basis. 

Definition 8. Consider the polynomial ring C[x], with a fixed monomial ordering, and an ideal I. A 
finite set of polynomials {g1, . . . , gs} ⊂ I is a Groebner basis of I if the initial ideal of I is generated by 
the leading terms of the gi, i.e., 

in(I) = �in(g1), . . . , in(gs)�. (1) 

Theorem 9. Every ideal I has a Groebner basis G. Furthermore, I = �g1, . . . , g .s�

The previous theorem essentially establishes Hilbert’s finiteness result, and gives an explicit charac­
terization of a finite generating set for the ideal I. Furthermore, since there are explicit algorithms to 
compute Groebner bases, this is a constructive version of this theorem. 

Even though the monomial ordering is fixed, Groebner bases as defined are not unique (why?). This 
can be easily fixed, by refining the concept to the so­called reduced Groebner bases, which are uniquely 
defined. 
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There are several possible algorithms to effectively compute Groebner bases. The traditional one 
is Buchberger’s algorithm, developed by Bruno Buchberger around 1965, and many variants have been 
proposed since. There are also several newer methods, based on sparse linear algebra, that in some in­
stances can significantly outperform the Buchberger approach. Good specialized programs for Groebner 
bases calculations (and much more) are CoCoA[CoC], Macaulay2 [GS] and Singular [GPS05]. 

2.3 Quotients and normal forms 

Recall that if we have an ideal I ⊂ C[x], we defined the quotient ring C[x]/I as the set of equivalence 
classes modulo the ideal. For computational purposes, we want a “good” representation of these classes, 
and in particular, a way to provide a “unique representative” to every polynomial. This can in fact be 
easily done once we have computed a Groebner basis. To each polynomial p ∈ C[x], we can associate a 
unique “normal form”, defined below. 

Lemma 10. Let G be a Groebner basis of the ideal I ⊂ C[x]. Given any p ∈ C[x], there exists a unique 
polynomial p̄, called the normal form of p, such that 

1. The polynomials p and p̄ are congruent mod I, i.e., p− p̄ ∈ I. 

2. Only standard monomials appear in p̄. 

Notice that we have p = + qsgs + p̄. Thus, the normal form can be interpreted as the q1g1 + · · · 
“remainder” after a division­like process by the generators gi. The key property (1) guarantees that this 
remainder is uniquely defined. 

As a consequence of this, we can solve the ideal membership problem: to check if a polynomial p(x) 
is in a given ideal I, compute a Groebner basis G of I, and check if the normal form of p(x) is the zero 
polynomial, i.e., p ∈ I p̄ = 0. ⇔ 

3 Applications and examples 

Groebner bases enable the algorithmic solution of many problems in computational algebraic geometry. 
We discuss some these below. 

•	 Ideal membership. As we have seen, given an ideal I and a polynomial p, we can check if p ∈ I by 
computing the normal form of p. 

•	 Radical membership. Consider an ideal I = �f1, . . . , f [x], and a polynomial p, for which we s� ⊂ C
want to check whether p ∈

√
I. Since 

√
I is also an ideal, we could compute a Groebner basis for 

it, and then reduce the problem to the previous one. However, it is often more efficient to instead 
use the following result (“Rabinowitch’s trick”): 

p ∈
√

I ⇔ 1 ∈ �f1, . . . , fs, 1 − yp�, 

where y is a (new) additional variable. 

•	 Consistency of polynomial equations. Consider a finite set of polynomial equations {fi = 0}, and 
let I = �fi� be the corresponding ideal. By the Nullstellensatz, the given equations are infeasible 
if and only if {1} is the reduced Groebner basis of I. 

•	 Elimination. For notational simplicity, consider an ideal I ⊂ C[x, y, z]. Suppose that we want 
to compute all the polynomials in I, that do not depend on the variable z, i.e., I ∩ C[x, y]. 
Geometrically, this elimination of variables corresponds to (the Zariski closure of) the projection 
of the corresponding variety into (x, y). This intersection (or projection) can be easily obtained, 
by computing a Groebner basis G of I with respect to a lexicographic (or elimination) ordering. 
The corresponding ideal is then generated by G ∩ C[x, y]. 
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4 Zero­dimensional ideals 

In practice, we are often interested in polynomial systems that have only a finite number of solutions 
(the “zero­dimensional” case), and many interesting things happen in this case. Among other properties, 
the quotient ring C[x]/I is now a finite dimensional vector space, with its dimension being equal to the 
number of standard monomials. Furthermore, Groebner bases can be used to fully reduce their solution 
to a classical eigenvalue problem, generalizing the “companion matrix” notion from the univariate case. 
All this, and much more, next time... 
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