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Quantifier elimination (QE) is a very powerful procedure for problems involving first­order formulas 
over real fields. The cylindrical algebraic decomposition (CAD) is a technique for the “efficient” im­
plementation of QE, that effectively reduces an seemingly infinite problem into a finite (but potentially 
large) instance. For much more information about QE and CAD (including a reprint of Tarski’s original 
1930 work), we recommend the book [CJ98]. 

Quantifier elimination 

A quantifier­free formula is an expression consisting of polynomial equations (f (x) = 0) and inequalities 
(f (x) ≤ 0) combined using the Boolean operators ∧ (and), ∨ (or), and ⇒ (implies). We often also allow 
strict inequalities f (x) > 0 and inequations f (x) =� 0, since these are just shorthands for particular 
boolean combinations of equations and inequalities. 

In general, a formula (in prenex form) is an expression in the variables x = (x1, ..., xn) of the following 
type: 

(Q1x1)...(Qsxs) F (f1(x), ..., fr (x)) (1) 

where Qi is one of the quantifiers ∀ (for all) and ∃ (there exists). Furthermore, F (f1(x), ..., fr (x)) is 
assumed to be a quantifier­free formula. If there is a quantifier corresponding to the variable xi, we say 
that xi is quantified, or free otherwise. 

Example 1. The following are valid formulas 

(∀x) [(x ≥ 0) ⇒ (x 2 + ax + b ≥ 0)]


(∀x)(∃y) [x > y 2]


(∀δ)(∃�) [(�2 + δ2 ≤ 1) ∨ (� = 0)] [δ < 1].
� ⇒ 

The first formula has two free variables (since the variables a and b are unquantified), while for the other 
two all variables are quantified. 

We will interpret the symbols in a formula as taking only real values. Notice that a formula without 
free variables (usualled called a closed formula or a sentence) is either true or false. For instance, the 
last two expressions in Example 1 are sentences, with the first one being false and the second being true. 
Notice also that the truth value may depend on the order of the quantifiers. 

Tarski showed that for every formula including quantifiers there is always an equivalent quantifier 
free formula. Obtaining the latter from the former is called quantifier elimination. 

Theorem 2 (Tarski­Seidenberg). For every first­order formula over the real field there exists an equiv­
alent quantifier­free formula. Furthermore, there is an explicit algorithm to compute this quantifier­free 
formula. 

The Tarski­Seidenberg theorem is an extremely powerful result, since it provides a complete charac­
terization and algorithmic technique for an extremely large collection of problems involving polynomials. 
Unfortunately, there are very serious computational barriers to the efficient practical implementation of 
these ideas, since the resulting algorithms have extremely poor scaling properties, with respect to the 
number of variables (towers of exponentials). Newer methods, such as the (partial) cylindrical algebraic 
decomposition (CAD) technique due to Collins and described below, or the critical point method, are by 
comparison much better. Nevertheless, by necessity they still behave exponentially (or worse) in terms 
of the number of variables. 
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2 Tarski­Seidenberg 

Example 3. Consider the quantified first­order formula: 

2 2 2(∀x)(∀y) [(x 2 + ay ≤ 1) ⇒ (ax − a xy + 2 ≥ 0)]. (2) 

This formula is equivalent to the quantifier free expression: 

3(a ≥ 0) ∧ (a − 8a − 16 ≤ 0), 

which defines the interval [0, a�], where a� ≈ 3.538. Thus, the original expression (2) is true only for 
a ∈ [0, a�]. 

2.1 Geometric interpretation 

A geometric interpretation of the Tarski­Seidenberg theorem is the following: 

Theorem 4. The projection of a semialgebraic set is semialgebraic. 

2.2 Applications 

Add many more ToDo 

Static output feedback An early application of Tarski­Seidenberg in control theory was the “so­
lution” of the static output feedback stabilization problem in [ABJ75]. Given matrices A ∈ Rn×n , 
B ∈ Rn×m, we want to find a matrix K ∈ Rm×n such that the matrix A + BK is Hurwitz, i.e., all its 
eigenvalues are in the left­hand plane. Since the existence of such a matrix can be easily expressed as a 
formula in first order logic1, the decidability and existence of an effective (but not efficient) algorithm 
immediately follows. 

Simultaneous stabilization A very interesting result by Blondel [Blo94, BG93] shows that the si­
multaneous stabilization of three linear time­invariant systems is not decidable (and thus, cannot be 
semialgebraic). Notice however that, for any given bound on the degree of the controller, the problem 
is decidable. 

3 Cylindrical Algebraic Decomposition (CAD) 

There are a few approaches for effective implementation of the QE procedure. One of the most well­
known, which is also relatively easy to understand, is the cylindrical algebraic decomposition (CAD) 
due to Collins [Col75]. We describe the elements of this approach below. We remark that much better 
algorithms (in the theoretical complexity sense) are known; see for instance the article by Renegar 
[Ren91] (also reprinted in [CJ98]) or [BPR03]. In particular, for CAD the number of operations usually 
scales in a doubly exponential fashion with the number of variables, while the newer methods are doubly 
exponential in the number of quantifier alternations. 

1For instance, (∃K)(∀x)(∀λ) [(A + BK)x = λx ∨ x = 0] ⇒ [�(λ) ≤ 0]. Notice that we are being a bit sloppy with 
notation, since for a fully real formulation, we should split x and λ into real and imaginary parts. There are many other 
equivalent expressions, using for instance a Lyapunov equation, or the Routh array. 
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3.0.1 Description 

Given a set P of multivariate polynomials in n variables, a CAD is a special partition of Rn into com­
ponents, called cells, over which all the polynomials have constant signs. The algorithm for computing 
a CAD also provides a point in each cell, called sample point, which can be used to determine the sign 
of the polynomials in the cell. 

A cell is called cylindrical if it has the form S × Rk , for some k ≤ n. A decomposition of Rn is a 
CAD if all polynomials have constant sign on each cell, and all cells are cylindrical. 

The CAD associated to the formula (1) depends only on its quantifier free part F (f1(x), ..., fr (x)). 
Since all possible truth values of the formula are in correspondence with the values at the sample points, 
we can use the CAD to evaluate its truth value, and to perform quantifier elimination. 

The basic CAD construction consists of two steps: projection and lifting (plus an additional third 
one, if formula construction is desired). 

In the first projection phase, we computes successive sets of polynomials in n − 1, n − 2, ..., 1 variables. 
The main idea is, given an input set of polynomials, to compute at each step a new set of polynomials 
obtained by eliminating one variable at a time. In general, the elimination order does matter and a good 
choice leads to lower computational complexity. 

The second phase (lifting) constructs a decomposition of R, at the lowest level of projection, af­
ter all but one variable have been eliminated. This decomposition of R is successively extended to a 
decomposition of Rn . 

The basic operations necessary in the construction of CADs are (sub)resultants and (sub)discriminants. 

Complete ToDo 

An implementation of (an improved version of) the CAD method for quantifier elimination is the 
software package QEPCAD [Bro03]. 
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