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MIT 6.972 Algebraic techniques and semidefinite optimization May 2, 2006 

Lecture 19 
Lecturer: Pablo A. Parrilo Scribe: ??? 

Today we continue with some additional aspects of quantifier elimination. We will then recall the 
Positivstellensatz and its relations with semidefinite programming. After introducing copositive matrices, 
we present Pólya’s theorem on positive forms on the simplex, and the associated relaxations. Finally, 
we conclude with an important result due to Schmüdgen about representation of positive polynomials 
on compact sets. 

Certificates 

ToDoTalk about certificates in QE 

Psatz revisited 

Recall the statement of the Positivstellensatz. 

Theorem 1 (Positivstellensatz). Consider the set S = 

S = ∅ ⇔ ∃f, h ∈ R[x] s.t. 

⎧⎨ ⎩ 

{x ∈ Rn fi(x) ≥ 0, hi(x) = 0}. Then, | 

f + h = −1 
f 
h 

cone{f1, . . . , f∈ 
ideal{h1, . . . , h

s

t

}
}∈ 

Once again, since the conditions on the polynomials f, h are convex and affine, respectively, by re­
stricting their degree to be less than or equal to a given bound d we have a finite­dimensional semidefinite 
programming problem. 

2.1 Hilbert 17th problem 

As we have seen, in the general case nonnegative multivariate polynomials can fail to be a sum of squares 
(the Motzkin polynomial being the classical counterxample). As part of his famous list of twenty­three 
problems that he presented at the International Congress of Mathematicians in 1900, David Hilbert 
asked the following1: 

17. Expression of definite forms by squares. A rational integral function or form 
in any number of variables with real coefficient such that it becomes negative for no real 
values of these variables, is said to be definite. The system of all definite forms is invariant 
with respect to the operations of addition and multiplication, but the quotient of two definite 
forms in case it should be an integral function of the variables is also a definite form. The 
square of any form is evidently always a definite form. But since, as I have shown, not every 
definite form can be compounded by addition from squares of forms, the question arises 
which I have answered affirmatively for ternary forms whether every definite form may not 
be expressed as a quotient of sums of squares of forms. At the same time it is desirable, for 
certain questions as to the possibility of certain geometrical constructions, to know whether 
the coefficients of the forms to be used in the expression may always be taken from the realm 
of rationality given by the coefficients of the form represented. 

1 This text was obtained from http://aleph0.clarku.edu/~djoyce/hilbert/, and corresponds to Newson’s translation 
of Hilbert’s original German address. In that website you will also find links to the current status of the problems, as well 
as the original German text. 

19­1 

http://aleph0.clarku.edu/~djoyce/hilbert/


3 

In other words, can we write every nonnegative polynomial as a sum of squares of rational functions? 
As we we show next, this is a rather direct consequence of the Psatz. Of course, it should be clear (and 
goes without saying) that we are (badly) inverting the historical order! In fact, much of the motivation 
for the development of real algebra came from Hilbert’s question. 

How can we use the Psatz to prove that a polynomial p(x) is nonnegative? Clearly, p is nonnegative 
if and only if the set {x ∈ Rn p(x) < 0} is empty. Since our version of the Psatz does not allow for |
strict inequalities (there are slightly more general, though equivalent, formulations that do), we’ll need 
a useful trick discussed earlier (“Rabinowitch’s trick”). Introducing a new variable z, the nonnegativity 
of p(x) is equivalent to the emptiness of the set described by 

−p(x) ≥ 0, 1 − zp(x) = 0. 

The Psatz can be used to show that this holds if and only if there exist polynomials s0, s1, t ∈ R[x, z] 
such that 

s0(x, z) − s1(x, z) · p + t(x, z) · (1 − zp) = −1, 

where s0, s1 are sums of squares. Replace now z 1/p(x), and multiply by p2k (where k is sufficiently 
large) to obtain 

→

2k s̃0 − s̃1 · p = −p , 

where s̃0, s̃1 are sums of squares in R[x]. Solving now for p, we have: 

s̃0(x) + p(x)2k 

= 
s̃1(x)(s̃0(x) + p(x)2k) 

2p(x) = 
s̃1(x) s̃1(x) 

, 

and since the numerator is a sum of squares, it follows that p(x) is indeed a sum of squares of rational 
functions. 

Copositive matrices and Pólya’s theorem 

An interesting class of matrices are the so­called copositive matrices, which are those for which the 
associated quadratic form is nonnegative on the nonnegative orthant. 

Definition 2. A matrix M ∈ Sn is copositive is it satisfies 

x T Mx ≥ 0, for all xi ≥ 0. 

As opposed to positive semidefiniteness, which can be checked in polynomial time, the recognition 
problem for copositive matrices is an NP­hard problem. The set of copositive is a closed convex cone, 
for which checking membership is a difficult problem. 

There are many interesting applications of copositive matrices. Among others, we mention: 

•	 Consider a graph G, with A being its the adjacency matrix. The stability number α of the graph 
G is equal to the cardinality of its largest stable set. By a result of Motzkin and Straus, it is known 
that it can be obtained as: 

1 
= min x T (I + A)x 

α(G) xi ≥0,
P

i xi =1 

This implies that α(G) ≤ γ if and only if the matrix γ · (I + A) − eeT is copositive. 

•	 Another interesting application of copositive matrices is in the performance analysis of queueing 
networks; see e.g. [KM96]. Modulo some (important) details, the basic idea is to use a quadratic 
function xT Mx as a Lyapunov function, where the matrix M is copositive and x represents the 
lengths of the queues. 
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ToDoAdd details + others 

An important related result is Pólya’s theorem on positive forms on the simplex: 

olya). Consider a homogeneous polynomial in n variables of degree d, that is strictly Theorem 3 (P´ �npositive in the unit simplex Δn := {x ∈ Rn xi ≥ 0, i=1 xi = 1}. Then, for large enough k, the |
polynomial (x1 + · · ·+ xn)k p(x) has nonnegative coefficients. 

We can provide a natural hierarchy of sufficient conditions for a matrix to be copositive. Completeness 
of this hierarchy follows directly from Pólya’s theorem [Par00]. 

There are some very interesting connections between Pólya’s result and a foundational theorem in 
probability known as De Finetti’s exchangeability theorem. 

Positive polynomials 

The Positivstellensatz allows us to obtain certificates of the emptiness of a basic semialgebraic set, 
explicitly given by polynomials. 

What if we want to apply this for optimization? As we have seen, it is relatively straightforward to 
convert an optimization problem to a family of feasibility problems, by considering the sublevel sets, i.e., 
the sets {x ∈ Rn f(x) ≤ γ}.|

In the general case of constrained problems, however, using the Psatz we will require conditions that 
are not linear in the unknown parameter γ (because we need products between the contraints), and this 
presents a difficulty to the direct use of SDP. Notice nevertheless, that the problem is certainly an SDP 
for any fixed value of γ, and it thus quasiconvex (which is almost as good, except for the fact that we 
cannot use “standard” SDP solvers to solve it directly, but rather rely on methods such as bisection). 

Theorem 4 ([Sch91]). If p(x) is strictly positive on K = {x ∈ Rn fi(x) ≥ 0}, and K is compact, then 
p(x) ∈ cone{f1, . . . , fs}. 

|

In the next lecture we will describe the basic elements of Schmüdgen’s proof. His approach com­
bines both algebraic tools (using the Positivstellensatz to prove the boundedness of certain operators) 
and functional analysis (spectral measures of commuting families of operators and the Hahn­Banach 
theorem). We will also describe some alternative versions due to Putinar, as well as a related purely 
functional­analytic result due to Megretski. 

For a comprehensive treatment and additional references, we mention [BCR98, Mar00, PD01] among 
others. 
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