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MIT 6.972 Algebraic techniques and semidefinite optimization May 9, 2006 

Lecture 21 
Lecturer: Pablo A. Parrilo Scribe: ??? 

In this lecture we study techniques to exploit the symmetry that can be present in semidefinite 
programming problems, particularly those arising from sum of squares decompositions [GP04]. For this, 
we present the basic elements of the representation theory of finite groups. There are many possible 
applications of these ideas in different fields; for the case of Markov chains, see [BDPX05]. 

Groups and their representations 

The representation theory of finite groups is a classical topic; good descriptions are given in [FS92, Ser77]. 
We concentrate here on the finite case; extensions to compact groups are relatively straightforward. 

Definition 1. A group consists of a set G and a binary operation “ ” defined on G, for which the · 
following conditions are satisfied: 

1. Associative: (a · b) · c = a · (b · c), for all a, b, c ∈ G. 

2. Identity: There exist 1 ∈ G such that a · 1 = 1 · a = a, for all a ∈ G. 

3. Inverse: Given a ∈ G, there exists b ∈ G such that a · b = b · a = 1. 

We consider a finite group G, and an n­dimensional vector space V . We define the associated (infinite) 
group GL(V ), which we can interpret as the set of invertible n × n matrices. A linear representation of 
the group G is a homomorphism ρ : G GL(V ). In other words, we have a mapping from the group →
into linear transformations of V , that respects the group structure, i.e. 

ρ(st) = ρ(s)ρ(t) ∀s, t ∈ G. 

Example 2. Let ρ(g) = 1 for all g ∈ G. This is the trivial representation of the group. 

Example 3. For a more interesting example, consider the symmetric group Sn, and the “natural” 
representation ρ : Sn GL(Cn), where ρ(g) is a permutation matrix. For instance, for the group of →
permutations of two elements, S2 = {e, g}, where g2 = e, we have 

1 0 0 1 
ρ(e) = 0 1 

, ρ(g) = 1 0 
. 

The representation given in Example 3 has an interesting property. The set of matrices {ρ(e), ρ(g)}
have common invariant subspaces (other than the trivial ones, namely (0, 0) and C2). Indeed, we can eas­
ily verify that the (orthogonal) one­dimensional subspaces given by (t, t) and (t, −t) are invariant under 
the action of these matrices. Therefore, the restriction of ρ to those subspaces also gives representations 
of the group G. In this case, the one corresponding to the subspace (t, t) is “equivalent” (in a well­defined 
sense) to the trivial representation described in Example 2. The other subspace (t, −t) gives the one­
dimensional alternating representation of S2, namely ρA(e) = 1, ρA(g) = −1. Thus, the representation 
ρ decomposes as ρ = ρT ⊕ ρA, a direct sum of the trivial and the alternating representations. 

The same ideas extend to arbitrary finite groups. 

Definition 4. An irreducible representation of a group is a linear representation with no nontrivial 
invariant subspaces. 

Theorem 5. Every finite group G has a finite number of nonequivalent irreducible representations ρi, 
d2of dimension di. The relation i i = G| holds.|
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Figure 1: Two symmetric optimization problems, one non­convex and the other convex. For the latter, 
optimal solutions always lie on the fixed­point subspace. 

Example 6. Consider the group S3 (permutations in three elements). This group is generated by the 
two permutations s : 123 213 and c : 123 312 (“swap” and “cycle”), and has six elements 

2 
→ 

3 
→ 

{e, s, c, c , cs, sc}. Notice that c = e, s2 = e, and s = csc. 
The group S3 has three irreducible representations, two one­dimensional, and one two­dimensional 

(so 12 + 12 + 22 = |S3 = 6). These are: |

ρT (s) = 1, ρT (c) = 1 

ρA(s) = −1, � � 
ρA(c) = 1 � � 

ρS (s) = 
0 
1 

1 
0 

, ρS (c) = 
ω 
0 

0 
ω2 

3where ω = e 
2πi 

is a cube root of 1. Notice that it is enough to specify a representation on the generators 
of the group. 

1.1 Symmetry and convexity 

A key property of symmetric convex sets is the fact that the “group average” 1 
g∈G σ(g)x always 

belongs to the set. 
|G| 

Therefore, in convex optimization we can always restrict the solution to the fixed­point subspace 

F := {x σ(g)x = x, ∀g ∈ G}.|

In other words, for convex problems, no “symmetry­breaking” is ever necessary. 
As another interpretation, that will prove useful later, the “natural” decision variables of a symmetric 

optimization problem are the orbits, not the points themselves. Thus, we may look for solutions in the 
quotient space. 

1.2 Invariant SDPs 
nWe consider a general SDP, described in geometric form. If L is an affine subspace of Sn, and C, X ∈ S , 

an SDP is given by: 
nmin�C, X� s.t. +.X ∈ X := L ∩ S

Definition 7. Given a finite group G, and associated representation σ : G → GL(Sn), a σ­invariant 
SDP is one where both the feasible set and the cost function are invariant under the group action, i.e., 

�C, X� = �C, σ(g)X�, ∀g ∈ G, X ∈ X ⇒ σ(g)X ∈ X ∀g ∈ G 
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Figure 2: The cyclic graph Cn in n vertices (here, n = 9). 

Example 8. Consider the SDP given by � � 

min a + c, s.t. 
a 
b 

b 
c 

� 0, 

which is invariant under the Z2 action: 

X11 X12 X22 −X12 

X12 X22 
→ −X12 X11 

. 

Usually in SDP, the group acts on Sn through a congruence transformation, i.e., σ(g)M = ρ(g)T Mρ(g), 
where ρ is a representation of G on Cn . In this case, the restriction to the fixed­point subspace takes 
the form: 

σ(g)M = M = ⇒ ρ(g)M −Mρ(g) = 0, ∀g ∈ G. (1) 

The Schur lemma of representation theory exactly characterizes the matrices that commute with a group 
action. 

As a consequence of an important structural result (Schur’s lemma), it turns out that every repre­
sentation can be written in terms of a finite number of primitive blocks, the irreducible representations 
of a group. 

Theorem 9. Every group representation ρ decomposes as a direct sum of irreducible representations: 

ρ = m1ϑ1 ⊕m2ϑ2 ⊕ · · · ⊕mN ϑN 

where m1, . . . ,mN are the multiplicities. 

This decomposition induces an isotypic decomposition of the space 

Cn .= V1 ⊕ · · · ⊕ VN , Vi = Vi1 ⊕ · · · ⊕ Vini 

In the symmetry­adapted basis, the matrices in the SDP have a block diagonal form: 

(I ⊗M1) ⊕ . . .⊕ (ImN ⊗MN )m1 

In terms of our symmetry­reduced SDPs, this means that not only the SDP block­diagonalizes, but 
there is also the possibility that many blocks are identical. 

1.3 Example: symmetric graphs 

Consider the MAXCUT problem on the cycle graph Cn with n vertices (see Figure 2). It is easy to see 
that the optimal cut has cost equal to n or n− 1, depending on whether n is even or odd, respectively. 
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What would the SDP relaxation yield in this case? If A is the adjacency matrix of the graph, then the 
SDP relaxations have essentially the form 

minimize Tr AX maximize Tr Λ 

s.t. Xii = 1 s.t. A � Λ (2) 
X � 0 Λ diagonal 

By the symmetry of the graph, the matrix A is circulant, i.e., Aij = ai−j mod n. 
We focus now on the dual form. It should be clear that the cyclic symmetry of the graph in­

duces a cyclic symmetry in the SDP, i.e., if Λ = diag(λ1, λ2, . . . , λn) is a feasible solution, then 
Λ̃ = diag(λn, λ1, λ2, . . . , λn−1) is also feasible and achieves the same objective value. Thus, by av­
eraging over the cyclic group, we can always restrict D to be a multiple of the identity matrix, i.e., 
Λ = λI. Furthermore, the constraint A � λI can be block­diagonalized via the Fourier matrix (i.e., the 
irreducible representations of the cyclic group), yielding: 

kπ 
A � λI ⇔ 2 cos ≥ λ k = 0, . . . , n− 1. 

n 

From this, the optimal solution of the relaxation can be directly computed, yielding the exact expressions 
for the upper bound on the size of the cut 

n n even 
mc(Cn) ≤ SDP (Cn) = 

π n cos2 n odd.2n 

Although this example is extremely simple, exactly the same techniques can be applied to much more 
complicated problems; see for instance [PP04, dKMP+, Sch05] for some recent examples. 

1.4 Example: even polynomials 

Another (but illustrative) example of symmetry reduction is the case of SOS decompositions of even 
polynomials. Consider a polynomial p(x) that is even, i.e., it satisfies p(x) = p(−x). Does this symmetry 
help in making the computations more efficient? 

Complete ToDo 

1.5 Benefits 

In the case of semidefinite programming, there are many benefits to exploiting symmetry: 

•	 Replace one big SDP with smaller, coupled problems. 

•	 Instead of checking if a big matrix is PSD, we use one copy of each repeated block (constraint 
aggregation). 

•	 Eliminates multiple eigenvalues (numerical difficulties). 

•	 For groups, the coordinate change depends only on the group, and not on the problem data. 

•	 Can be used as a general preprocessing scheme. The coordinate change T is unitary, so well­
conditioned. 

As we will see in the next section, this approach can be extended to more general algebras that do not 
necessarily arise from groups. 
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1.6 Sum of squares 

In the case of SDPs arising from sum of squares decompositions, a parallel theory can be developed 
by considering the symmetry­induced decomposition of the full polynomial ring R[x]. Since the details 
involve some elements of invariant theory, we omit the details here; see [GP04] for the full story. 

ToDoInclude example 

Algebra decomposition 

An alternative (and somewhat more general) approach can be obtained by focusing instead on the 
associative algebra generated by the matrices in a semidefinite program. 

Definition 10. An associative algebra A over C is a vector space with a C­bilinear operation · : A×A → 
A that satisfies 

x · (y · z) = (x · y) · z, ∀x, y, z ∈ A. 

In general, associative algebras do not need to be commutative (i.e., x · y = y · x). However, that is 
an important special case, with many interesting properties. Important examples of finite dimensional 
associative algebras are: 

• Full matrix algebra Cn×n, standard product. 

• The subalgebra of square matrices with equal row and column sums. 

• The n­dimensional algebra generated by a single n× n matrix. 

• The group algebra: formal C­linear combination of group elements. 

• Polynomial multiplication modulo a zero dimensional ideal. 

• The Bose­Mesner algebra of an association scheme.


We have already encountered some of these, when studying the companion matrix and its general­

izations to the multivariate case. A particularly interesting class of algebras (for a variety of reasons)

are the semisimple algebras.


Definition 11. The radical of an associative algebra A, denoted rad(A), is the intersection of all

maximal left ideals of A. 

Definition 12. An associative algebra A is semisimple if Rad(A) = 0. 

For a semidefinite programming problem in standard (dual) form 

m

max bT y s.t. A0 − Aiyi � 0, 
i=1 

we consider the algebra generated by the Ai. 

Theorem 13. Let {A0, . . . , Am} be given symmetric matrices, and A the generated associative algebra. 
Then, A is a semisimple algebra. 

Semisimple algebras have a very nice structure, since they are essentially the direct sum of much 
simpler algebras. 
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Theorem 14 (Wedderburn). Every finite dimensional semisimple associative algebra over C can be 
decomposed as a direct sum 

A1 ⊕A2 ⊕ . . . ⊕Ak .A = 

Each Ai is isomorphic to a simple full matrix algebra. 

Example 15. A well­known example is the (commutative) algebra of circulant matrices, i.e., those of 
the form ⎤⎡ 

A = 
⎢⎢⎣ 

a1 a2 a3 a4 

a4 a1 a2 a3 

a3 a4 a1 a2 

a2 a3 a4 a1 

⎥⎥⎦ . 

Circulant matrices are ubiquitous in many applications, such as signal processing. It is well­known that 
there exists a fixed coordinate change (the Fourier matrix) under which all matrices A are diagonal (with 
distinct scalar blocks). 

Remark 16. In general, any associative algebra is the direct sum of its radical and a semisimple algebra. 
For the n­dimensional algebra generated by a single matrix A ∈ Cn×n, we have that A = S + N , where 
S is diagonalizable, N is nilpotent, and SN = NS. Thus, this statement is essentially equivalent to the 
existence of the Jordan decomposition. 
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