MIT 6.972 Algebraic techniques and semidefinite optimization	May 9, 2006
Lecture 21	
Lecturer: Pablo A. Parrilo	Scribe: ???

In this lecture we study techniques to exploit the symmetry that can be present in semidefinite programming problems, particularly those arising from sum of squares decompositions [GP04]. For this, we present the basic elements of the representation theory of finite groups. There are many possible applications of these ideas in different fields; for the case of Markov chains, see [BDPX05].

1 Groups and their representations

The representation theory of finite groups is a classical topic; good descriptions are given in [FS92, Ser77]. We concentrate here on the finite case; extensions to compact groups are relatively straightforward.

Definition 1. A group consists of a set G and a binary operation " \cdot " defined on G, for which the following conditions are satisfied:

- 1. Associative: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$, for all $a, b, c \in G$.
- 2. Identity: There exist $1 \in G$ such that $a \cdot 1 = 1 \cdot a = a$, for all $a \in G$.
- 3. Inverse: Given $a \in G$, there exists $b \in G$ such that $a \cdot b = b \cdot a = 1$.

We consider a finite group G, and an *n*-dimensional vector space V. We define the associated (infinite) group GL(V), which we can interpret as the set of invertible $n \times n$ matrices. A *linear representation* of the group G is a homomorphism $\rho : G \to GL(V)$. In other words, we have a mapping from the group into linear transformations of V, that respects the group structure, i.e.

$$\rho(st) = \rho(s)\rho(t) \quad \forall s, t \in G.$$

Example 2. Let $\rho(g) = 1$ for all $g \in G$. This is the trivial representation of the group.

Example 3. For a more interesting example, consider the symmetric group S_n , and the "natural" representation $\rho : S_n \to GL(\mathbb{C}^n)$, where $\rho(g)$ is a permutation matrix. For instance, for the group of permutations of two elements, $S_2 = \{e, g\}$, where $g^2 = e$, we have

$$\rho(e) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad \rho(g) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

The representation given in Example 3 has an interesting property. The set of matrices $\{\rho(e), \rho(g)\}$ have common invariant subspaces (other than the trivial ones, namely (0,0) and \mathbb{C}^2). Indeed, we can easily verify that the (orthogonal) one-dimensional subspaces given by (t,t) and (t,-t) are invariant under the action of these matrices. Therefore, the restriction of ρ to those subspaces also gives representations of the group G. In this case, the one corresponding to the subspace (t,t) is "equivalent" (in a well-defined sense) to the trivial representation described in Example 2. The other subspace (t, -t) gives the one-dimensional alternating representation of S_2 , namely $\rho_A(e) = 1, \rho_A(g) = -1$. Thus, the representation ρ decomposes as $\rho = \rho_T \oplus \rho_A$, a direct sum of the trivial and the alternating representations.

The same ideas extend to arbitrary finite groups.

Definition 4. An irreducible representation of a group is a linear representation with no nontrivial invariant subspaces.

Theorem 5. Every finite group G has a finite number of nonequivalent irreducible representations ρ_i , of dimension d_i . The relation $\sum_i d_i^2 = |G|$ holds.

Figure 1: Two symmetric optimization problems, one non-convex and the other convex. For the latter, optimal solutions always lie on the fixed-point subspace.

Example 6. Consider the group S_3 (permutations in three elements). This group is generated by the two permutations $s : 123 \rightarrow 213$ and $c : 123 \rightarrow 312$ ("swap" and "cycle"), and has six elements $\{e, s, c, c^2, cs, sc\}$. Notice that $c^3 = e, s^2 = e$, and s = csc.

The group S_3 has three irreducible representations, two one-dimensional, and one two-dimensional (so $1^2 + 1^2 + 2^2 = |S_3| = 6$). These are:

$$\begin{aligned} \rho_T(s) &= 1, & \rho_T(c) &= 1\\ \rho_A(s) &= -1, & \rho_A(c) &= 1\\ \rho_S(s) &= \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}, & \rho_S(c) &= \begin{bmatrix} \omega & 0\\ 0 & \omega^2 \end{bmatrix} \end{aligned}$$

where $\omega = e^{\frac{2\pi i}{3}}$ is a cube root of 1. Notice that it is enough to specify a representation on the generators of the group.

1.1 Symmetry and convexity

A key property of symmetric *convex* sets is the fact that the "group average" $\frac{1}{|G|} \sum_{g \in G} \sigma(g) x$ always belongs to the set.

Therefore, in convex optimization we can always restrict the solution to the fixed-point subspace

$$\mathcal{F} := \{ x | \sigma(g) x = x, \quad \forall g \in G \}.$$

In other words, for convex problems, no "symmetry-breaking" is ever necessary.

As another interpretation, that will prove useful later, the "natural" decision variables of a symmetric optimization problem are the *orbits*, not the points themselves. Thus, we may look for solutions in the quotient space.

1.2 Invariant SDPs

We consider a general SDP, described in geometric form. If \mathcal{L} is an affine subspace of \mathcal{S}^n , and $C, X \in \mathcal{S}^n$, an SDP is given by:

$$\min\langle C, X \rangle$$
 s.t. $X \in \mathcal{X} := \mathcal{L} \cap \mathcal{S}_+^n$.

Definition 7. Given a finite group G, and associated representation $\sigma : G \to GL(S^n)$, a σ -invariant SDP is one where both the feasible set and the cost function are invariant under the group action, i.e.,

$$\langle C, X \rangle = \langle C, \sigma(g)X \rangle, \quad \forall g \in G, \quad X \in \mathcal{X} \Rightarrow \sigma(g)X \in \mathcal{X} \quad \forall g \in G$$

Figure 2: The cyclic graph C_n in *n* vertices (here, n = 9).

Example 8. Consider the SDP given by

$$\min a + c, \qquad s.t. \quad \begin{bmatrix} a & b \\ b & c \end{bmatrix} \succeq 0,$$

which is invariant under the Z_2 action:

$$\left[\begin{array}{cc} X_{11} & X_{12} \\ X_{12} & X_{22} \end{array}\right] \rightarrow \left[\begin{array}{cc} X_{22} & -X_{12} \\ -X_{12} & X_{11} \end{array}\right].$$

Usually in SDP, the group acts on S^n through a congruence transformation, i.e., $\sigma(g)M = \rho(g)^T M \rho(g)$, where ρ is a representation of G on \mathbb{C}^n . In this case, the restriction to the fixed-point subspace takes the form:

$$\sigma(g)M = M \qquad \Longrightarrow \qquad \rho(g)M - M\rho(g) = 0, \quad \forall g \in G.$$
(1)

The Schur lemma of representation theory exactly characterizes the matrices that commute with a group action.

As a consequence of an important structural result (Schur's lemma), it turns out that every representation can be written in terms of a finite number of primitive blocks, the *irreducible representations* of a group.

Theorem 9. Every group representation ρ decomposes as a direct sum of irreducible representations:

 $\rho = m_1 \vartheta_1 \oplus m_2 \vartheta_2 \oplus \cdots \oplus m_N \vartheta_N$

where m_1, \ldots, m_N are the multiplicities.

This decomposition induces an isotypic decomposition of the space

$$\mathbb{C}^n = V_1 \oplus \cdots \oplus V_N, \quad V_i = V_{i1} \oplus \cdots \oplus V_{in_i}.$$

In the symmetry-adapted basis, the matrices in the SDP have a block diagonal form:

$$(I_{m_1} \otimes M_1) \oplus \ldots \oplus (I_{m_N} \otimes M_N)$$

In terms of our symmetry-reduced SDPs, this means that not only the SDP block-diagonalizes, but there is also the possibility that many blocks are identical.

1.3 Example: symmetric graphs

Consider the MAXCUT problem on the cycle graph C_n with n vertices (see Figure 2). It is easy to see that the optimal cut has cost equal to n or n - 1, depending on whether n is even or odd, respectively.

What would the SDP relaxation yield in this case? If A is the adjacency matrix of the graph, then the SDP relaxations have essentially the form

minimize
$$\operatorname{Tr} AX$$
 maximize $\operatorname{Tr} \Lambda$
s.t. $X_{ii} = 1$ s.t. $A \succeq \Lambda$ (2)
 $X \succ 0$ Λ diagonal

By the symmetry of the graph, the matrix A is *circulant*, i.e., $A_{ij} = a_{i-j \mod n}$.

We focus now on the dual form. It should be clear that the cyclic symmetry of the graph induces a cyclic symmetry in the SDP, i.e., if $\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$ is a feasible solution, then $\tilde{\Lambda} = \text{diag}(\lambda_n, \lambda_1, \lambda_2, \ldots, \lambda_{n-1})$ is also feasible and achieves the same objective value. Thus, by averaging over the cyclic group, we can always restrict D to be a multiple of the identity matrix, i.e., $\Lambda = \lambda I$. Furthermore, the constraint $A \succeq \lambda I$ can be block-diagonalized via the Fourier matrix (i.e., the irreducible representations of the cyclic group), yielding:

$$A \succeq \lambda I \qquad \Leftrightarrow \qquad 2\cos\frac{k\pi}{n} \ge \lambda \qquad k = 0, \dots, n-1.$$

From this, the optimal solution of the relaxation can be directly computed, yielding the exact expressions for the upper bound on the size of the cut

$$mc(C_n) \le SDP(C_n) = \begin{cases} n & n \text{ even} \\ n \cos^2 \frac{\pi}{2n} & n \text{ odd.} \end{cases}$$

Although this example is extremely simple, exactly the same techniques can be applied to much more complicated problems; see for instance [PP04, dKMP⁺, Sch05] for some recent examples.

1.4 Example: even polynomials

Another (but illustrative) example of symmetry reduction is the case of SOS decompositions of even polynomials. Consider a polynomial p(x) that is *even*, i.e., it satisfies p(x) = p(-x). Does this symmetry help in making the computations more efficient?

Complete

ToDo

1.5 Benefits

In the case of semidefinite programming, there are many benefits to exploiting symmetry:

- Replace one big SDP with smaller, coupled problems.
- Instead of checking if a big matrix is PSD, we use one copy of each repeated block (constraint aggregation).
- Eliminates multiple eigenvalues (numerical difficulties).
- For groups, the coordinate change depends only on the group, and not on the problem data.
- Can be used as a general preprocessing scheme. The coordinate change T is unitary, so well-conditioned.

As we will see in the next section, this approach can be extended to more general algebras that do not necessarily arise from groups.

1.6 Sum of squares

In the case of SDPs arising from sum of squares decompositions, a parallel theory can be developed by considering the symmetry-induced decomposition of the full polynomial ring $\mathbb{R}[x]$. Since the details involve some elements of invariant theory, we omit the details here; see [GP04] for the full story.

Include example

ToDo

2 Algebra decomposition

An alternative (and somewhat more general) approach can be obtained by focusing instead on the *associative algebra* generated by the matrices in a semidefinite program.

Definition 10. An associative algebra \mathcal{A} over \mathbb{C} is a vector space with a \mathbb{C} -bilinear operation $\cdot : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ that satisfies

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z, \qquad \forall x, y, z \in \mathcal{A}.$$

In general, associative algebras do not need to be commutative (i.e., $x \cdot y = y \cdot x$). However, that is an important special case, with many interesting properties. Important examples of finite dimensional associative algebras are:

- Full matrix algebra $\mathbb{C}^{n \times n}$, standard product.
- The subalgebra of square matrices with equal row and column sums.
- The *n*-dimensional algebra generated by a single $n \times n$ matrix.
- The group algebra: formal C-linear combination of group elements.
- Polynomial multiplication modulo a zero dimensional ideal.
- The Bose-Mesner algebra of an association scheme.

We have already encountered some of these, when studying the companion matrix and its generalizations to the multivariate case. A particularly interesting class of algebras (for a variety of reasons) are the *semisimple* algebras.

Definition 11. The radical of an associative algebra \mathcal{A} , denoted $rad(\mathcal{A})$, is the intersection of all maximal left ideals of \mathcal{A} .

Definition 12. An associative algebra \mathcal{A} is semisimple if $Rad(\mathcal{A}) = 0$.

For a semidefinite programming problem in standard (dual) form

$$\max b^T y \qquad \text{s.t.} \quad A_0 - \sum_{i=1}^m A_i y_i \succeq 0,$$

we consider the algebra generated by the A_i .

Theorem 13. Let $\{A_0, \ldots, A_m\}$ be given symmetric matrices, and \mathcal{A} the generated associative algebra. Then, \mathcal{A} is a semisimple algebra.

Semisimple algebras have a very nice structure, since they are essentially the direct sum of much simpler algebras.

Theorem 14 (Wedderburn). Every finite dimensional semisimple associative algebra over \mathbb{C} can be decomposed as a direct sum

$$\mathcal{A} = \mathcal{A}_1 \oplus \mathcal{A}_2 \oplus \ldots \oplus \mathcal{A}_k.$$

Each A_i is isomorphic to a simple full matrix algebra.

Example 15. A well-known example is the (commutative) algebra of circulant matrices, i.e., those of the form

$$A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ a_4 & a_1 & a_2 & a_3 \\ a_3 & a_4 & a_1 & a_2 \\ a_2 & a_3 & a_4 & a_1 \end{bmatrix}.$$

Circulant matrices are ubiquitous in many applications, such as signal processing. It is well-known that there exists a fixed coordinate change (the Fourier matrix) under which all matrices A are diagonal (with distinct scalar blocks).

Remark 16. In general, any associative algebra is the direct sum of its radical and a semisimple algebra. For the n-dimensional algebra generated by a single matrix $A \in \mathbb{C}^{n \times n}$, we have that A = S + N, where S is diagonalizable, N is nilpotent, and SN = NS. Thus, this statement is essentially equivalent to the existence of the Jordan decomposition.

References

- [BDPX05] S. Boyd, P. Diaconis, P. A. Parrilo, and L. Xiao. Symmetry analysis of reversible Markov chains. *Internet Math.*, 2(1):31–71, 2005.
- $[dKMP^+]$ E. de Klerk, J. Maharry, D.V. Pasechnik, R.B. Richter, and G. Salazar. Improved bounds for the crossing numbers of $K_{m,n}$ and K_n . http://arxiv.org/abs/math.CO/0404142.
- [FS92] A. Fässler and E. Stiefel. *Group Theoretical Methods and Their Applications*. Birkhäuser, 1992.
- [GP04] K. Gatermann and P. A. Parrilo. Symmetry groups, semidefinite programs, and sums of squares. *Journal of Pure and Applied Algebra*, 192(1-3):95–128, 2004.
- [PP04] P. A. Parrilo and R. Peretz. An inequality for circle packings proved by semidefinite programming. *Discrete and Computational Geometry*, 31(3):357–367, 2004.
- [Sch05] A. Schrijver. New code upper bounds from the Terwilliger algebra and semidefinite programming. *IEEE Transactions on Information Theory*, 51(8):2859–2866, 2005.
- [Ser77] J.-P. Serre. Linear Representations of Finite Groups. Springer-Verlag, 1977.