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Introduction 

Consider a given system of polynomial equations and 
inequalities, for instance: 

f1(x1, x2) := 

g1(x1, x2) := 

g2(x1, x2) := 

2	 2 x1 + x2 − 1 = 0, 
33 x2 − x1 − 2 ≥ 0, (1) 

3 x1 − 8 x2 ≥ 0. 

How can one find real solutions (x1, x2)? How to 
prove that they do not exist? And if the solution set 
is nonempty, how to optimize a polynomial function 
over this set? 

Until a few years ago, the default answer to these 
and similar questions would have been that the possi­
ble nonconvexity of the feasible set and/or objective 
function precludes any kind of analytic global results. 
Even today, the methods of choice for most prac­
titioners would probably employ mostly local tech­
niques (Newton’s and its variations), possibly com­
plemented by a systematic search using deterministic 
or stochastic exploration of the solution space, inter­
val analysis or branch and bound. 

However, very recently there have been renewed 
hopes for the efficient solution of specific instances of 
this kind of problems. The main reason is the appear­
ance of methods that combine in a very interesting 
fashion ideas from real algebraic geometry and convex 
optimization [27, 30, 21]. As we will see, these meth­
ods are based on the intimate links between sum of 
squares decompositions for multivariate polynomials 
and semidefinite programming (SDP). 

In this note we outline the essential elements of 
this new research approach as introduced in [30, 32],
and provide pointers to the literature. The center­
pieces will be the following two facts about multi­
variate polynomials and systems of polynomials in­
equalities: 

Sum of squares decompositions can be com­
puted using semidefinite programming. 

The search for infeasibility certificates is a 
convex problem. For bounded degree, it is 
an SDP. 

In the rest of this note, we define the basic ideas 
needed to make the assertions above precise, and ex­
plain the relationship with earlier techniques. For 
this, we will introduce sum of squares polynomials 
and the notion of sum of squares programs. We then 
explain how to use them to provide infeasibility cer­
tificates for systems of polynomial inequalities, finally 
putting it all together via the surprising connections 
with optimization. 

On a related but different note, we mention a grow­
ing body of work also aimed at the integration of ideas 
from algebra and optimization, but centered instead 
on integer programming and toric ideals; see for in­
stance [7, 42, 3] and the volume [1] as starting points. 

2	 Sums of squares and SOS 
programs 

αOur notation is mostly standard. The monomial x
associated to the n­tuple α = (α1, . . . , αn) has the 

α1form	 x1 . . . xαn , where αi ∈ N0. The degree of a n	 �nmonomial xα is the nonnegative integer αi. Ai=1 
polynomial is a finite linear combination of monomi­
als α∈S cαxα, where the coefficients cα are real. If 
all the monomials have the same degree d, we will call 
the polynomial homogeneous of degree d. We denote 
the ring of multivariate polynomials with real coeffi­
cients in the indeterminates {x1, . . . , xn} as R[x]. 

A multivariate polynomial is a sum of squares 
(SOS) if it can be written as a sum of squares of 
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other polynomials, i.e., 

2 p(x) = qi (x), qi(x) ∈ R[x]. 
i 

If p(x) is SOS then clearly p(x) ≥ 0 for all x. In 
general, SOS decompositions are not unique. 

2 2Example 1 The polynomial p(x1, x2) = x1 −x1x2 + 
4x2 + 1 is SOS. Among infinite others, it has the de­

compositions: 

3 2 1 2 p(x1, x2) = 
4
(x1 − x2)

2 + 
4
(x1 + x2)

2 + 1 

1 2 2 2= 
9
(3 − x2)

2 + x2 +3 
23 21 2+

288
(9x1 − 16x2)

2 + 
32 

x1. 

The sum of squares condition is a quite natural suf­
ficient test for polynomial nonnegativity. Its rich 
mathematical structure has been analyzed in detail in 
the past, notably by Reznick and his coauthors [6, 38], 
but until very recently the computational implica­
tions have not been fully explored. In the last few 
years there have been some very interesting new de­
velopments surrounding sums of squares, where sev­
eral independent approaches have produced a wide 
array of results linking foundational questions in al­
gebra with computational possibilities arising from 
convex optimization. Most of them employ semidef­
inite programming (SDP) as the essential computa­
tional tool. For completeness, we present in the next 
paragraph a brief summary of SDP. 

Semidefinite programming SDP is a broad gen­
eralization of linear programming (LP), to the case 
of symmetric matrices. Denoting by Sn the space of 
n×n symmetric matrices, the standard SDP primal­
dual formulation is: 

X = bi, i = 1, . . . ,m 
minX X s.t. 

Ai •C •
X � 0 

m maxy b
T y, s.t. i=1 Aiyi � C 

(2) 
where Ai, C, X ∈ Sn and b, y ∈ Rm . The matrix 
inequalities are to be interpreted in the partial or­
der induced by the positive semidefinite cone, i.e., 
X � Y means that X − Y is a positive semidefinite 
matrix. Since its appearance almost a decade ago 
(related ideas, such as eigenvalue optimization, have 
been around for decades) there has been a true “rev­
olution” in computational methods, supported by an 

astonishing variety of applications. By now there are 
several excellent introductions to SDP; among them 
we mention the well­known work of Vandenberghe 
and Boyd [44] as a wonderful survey of the basic the­
ory and initial applications, and the handbook [45]
for a comprehensive treatment of the many aspects 
of the subject. Other survey works, covering differ­
ent complementary aspects are the early work by Al­
izadeh [2], Goemans [15], as well as the more recent 
ones due to Todd [43], De Klerk [9] and Laurent and 
Rendl [25].

From SDP to SOS The main object of interest in 
semidefinite programming is 

Quadratic forms, that are positive semi­
definite. 

When attempting to generalize this construction to 
homogeneous polynomials of higher degree, an un­
surmountable difficulty that appears is the fact that 
deciding nonnegativity for quartic or higher degree 
forms is an NP­hard problem. Therefore, a computa­
tional tractable replacement for this is the following: 

Even degree polynomials, that are sums 
of squares. 

Sum of squares programs can then be defined as op­
timization problems over affine families of polynomi­
als, subject to SOS contraints. Like SDPs, there are 
several possible equivalent descriptions. We choose 
below a free variables formulation, to highlight the 
analogy with the standard SDP dual form discussed 
above. 

Definition 1 A sum of squares program has the 
form 

maxy + bmymb1y1 + · · ·
s.t. Pi(x, y) are SOS, i = 1, . . . , p 

where Pi(x, y) := Ci(x) + Ai1(x)y1 + · · ·+ Aim(x)ym, 
and the Ci, Aij are given polynomials in the variables 
xi. 

SOS programs are very useful, since they directly op­
erate with polynomials as their basic objects, thus 
providing a quite natural modelling formulation for 
many problems. Among others, examples for this are 
the search for Lyapunov functions for nonlinear sys­
tems [30, 28], probability inequalities [4], as well as 
the relaxations in [30, 21] discussed below. 

Interestingly enough, despite their apparently 
greater generality, sum of squares programs are in 
fact equivalent to SDPs. On the one hand, by choos­
ing the polynomials Ci(x), Aij (x) to be quadratic 
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forms, we recover standard SDP. On the other hand, 
as we will see in the next section, it is possible to 
exactly embed every SOS program into a larger SDP. 
Nevertheless, the rich algebraic structure of SOS pro­
grams will allow us a much deeper understanding of 
their special properties, as well as enable customized, 
more efficient algorithms for their solution [26]. 

Furthermore, as illustrated in later sections, there 
are numerous questions related to some foundational 
issues in nonconvex optimization that have simple 
and natural formulations as SOS programs. 

SOS programs as SDPs Sum of squares pro­
grams can be written as SDPs. The reason is the 
following theorem: 

Theorem 1 A polynomial p(x) is SOS if and only 
if p(x) = zT Qz, where z is a vector of monomials in 
the xi variables, Q ∈ SN and Q � 0. 

In other words, every SOS polynomial can be written 
as a quadratic form in a set of monomials of cardinal­
ity N , with the corresponding matrix being positive 
semidefinite. The vector of monomials z (and there­
fore N) in general depends on the degree and sparsity 
pattern of p(x). If p(x) has n variables and total de­
gree 2d, then z can always be chosen as a subset of 

SOS and convexity The connection between sum 
of squares decompositions and convexity can be 
traced back to the work of N. Z. Shor [39]. In this 
1987 paper, he essentially outlined the links between 
Hilbert’s 17th problem and a class of convex bounds 
for unconstrained polynomial optimization problems. 
Unfortunately, the approach went mostly unnoticed 
for several years, probably due to the lack of the con­
venient framework of SDP. 

3 Algebra and optimization 

A central theme throughout convex optimization is 
the idea of infeasibility certificates (for instance, in 
LP via Farkas’ lemma), or equivalently, theorems of 
the alternative. As we will see, the key link relating 
algebra and optimization in this approach is the fact 
that infeasibility can always be certified by a partic­
ular algebraic identity, whose solution is found via 
convex optimization. 

We explain some of the concrete results in The­
orem 5, after a brief introduction to two algebraic 
concepts, and a comparison with three well­known 
infeasibility certificates. 

Ideals and cones For later reference, we define the set of monomials of degree less than or equal to 
n+d here two important algebraic objects: the ideal andd, of cardinality N = .d the cone associated with a set of polynomials: 

Example 2 Consider again the polynomial from Ex­

ample 1. It has the representation Definition 2 Given a set of multivariate polynomi­


als {f1, . . . , fm}, let ⎤⎡ 
1 

T ⎡ ⎤⎡⎤ 
6 0 −2 0 

0 
1 

m

, ideal(f1, . . . , fm) := {f f = tifi, ti ∈ R[x] .| }
⎢⎢⎣ 

⎢⎢⎣ 
⎥⎥⎦ 

⎢⎢⎣ 
⎥⎥⎦ 

⎥⎥⎦ 
1 0 4 0x2 x2 p(x1, x2) = 2 2−2 0 6 −3 

0 6 
6 x x2 2 

i=10 −3x1 x1 

Definition 3 Given a set of multivariate polynomi­and the matrix in the expression above is positive als {g1, . . . , gm}, let semidefinite. 

In the representation f(x) = zT Qz, for the right­ cone(g1, . . . , gm) := {g g = s0 + sigi+|
and left­hand sides to be identical, all the coefficients {i}

of the corresponding polynomials should be equal. + sij gigj + sijkgigj gk + · · · },
Since Q is simultaneously constrained by linear equa­

tions and a positive semidefiniteness condition, the 

{i,j}
 {i,j,k} 

problem can be easily seen to be directly equivalent 
to an SDP feasibility problem in the standard primal 
form (2). 

Given a SOS program, we can use the theorem 
above to construct an equivalent SDP. The conversion 
step is fully algorithmic, and has been implemented, 
for instance, in the SOSTOOLS [36] software pack­
age. Therefore, we can in principle directly apply 
all the available numerical methods for SDP to solve 
SOS programs. 

where each term in the sum is a squarefree product of 
the polynomials gi, with a coefficient sα ∈ R[x] that is 
a sums of squares. The sum is finite, with a total of 
2m − 1 terms, corresponding to the nonempty subsets 
of {g1, . . . , gm}. 

These algebraic objects will be used for deriving valid 
inequalities, which are logical consequences of the 
given constraints. Notice that by construction, every 
polynomial in ideal(fi) vanishes in the solution set 
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of fi(x) = 0. Similarly, every element of cone(gi) is Theorem 4 (Farkas lemma) 
clearly nonnegative on the feasible set of gi(x) ≥ 0. 

The notions of ideal and cone as used above are Ax + b = 0 
is infeasible 

standard in real algebraic geometry; see for instance Cx + d ≥ 0 

[5]. In particular, the cones are also referred to as a 
preorders. Notice that as geometric objects, ideals are 

AT µ + CT λ = 0 
bT µ + dT λ = −1. 

affine sets, and cones are closed under convex com­ ∃ λ ≥ 0, µ s.t. 
binations and nonnegative scalings (i.e., they are ac­
tually cones in the convex geometry sense). These 
convexity properties, coupled with the relationships Although not widely known in the optimization com­

munity until recently, it turns out that similar cer­
tificates do exist for arbitrary systems of polynomial 

between SDP and SOS, will be key for our develop­
ments in the next section. 

equations and inequalities over the reals. The result 
Infeasibility certificates If a system of equations essentially appears in this form in [5], and is due to 
does not have solutions, how do we prove this fact? Stengle [40]. 
A very useful concept is that of certificates, which 
are formal algebraic identities that provide irrefutable Theorem 5 (Positivstellensatz) 
evidence of the inexistence of solutions. 

⎧⎨ 

We briefly illustrate some well­known examples be­ fi(x) = 0, (i = 1, . . . ,m) 
is infeasible in Rn 

low. The first two deal with linear systems and poly­ 0, (i = 1, . . . , p)gi(x) ≥
nomial equations over the complex numbers, respec­
tively. 

F (x) + G(x) = −1

F (x) ∈ ideal(f1, . . . , fm)

G(x) ∈ cone(g1, . . . , gp).


Theorem 2 (Range/kernel) ∃ F (x), G(x) ∈ R[x] s.t. ⎩ 

Ax = b is infeasible 

∃ µ s.t. AT µ = 0, bT µ = −1. 

Theorem 3 (Hilbert’s Nullstellensatz) Let 
fi(z), . . . , fm(z) be polynomials in complex variables 
z1, . . . , zn. Then, 

fi(z) = 0 (i = 1, . . . ,m) is infeasible in Cn 

−1 ∈ ideal(f1, . . . , fm). 

Each of these theorems has an “easy” direction. For 
instance, for the first case, given the multipliers µ the 
infeasibility is obvious, since 

Ax = b µ T Ax = µ T b ⇒ 0 = −1,⇒ 

which is clearly a contradiction. 
The two theorems above deal only with the case of 

equations. The inclusion of inequalities in the prob­
lem formulation poses additional algebraic challenges, 
because we need to work on an ordered field. In other 
words, we need to take into account special properties 
of the reals, and not just the complex numbers. 

For the case of linear inequalities, LP duality pro­
vides the following characterization: 

4 

The theorem states that for every infeasible system 
of polynomial equations and inequalities, there ex­
ists a simple algebraic identity that directly certifies 
the inexistence of real solutions. By construction, 
the evaluation of the polynomial F (x) + G(x) at any 
feasible point should produce a nonnegative number. 
However, since this expression is identically equal to 
the polynomial −1, we arrive at a contradiction. Re­
markably, the Positivstellensatz holds under no as­
sumptions whatsoever on the polynomials. 

The use of the German word “Positivstellensatz” 
is standard in the field, and parallels the classical 
“Nullstellensatz” (roughly, “theorem of the zeros”) 
obtained by Hilbert in 1901 and mentioned above. 

In the worst case, the degree of the infeasibility 
certificates F (x), G(x) could be high (of course, this 
is to be expected, due to the NP­hardness of the 
original question). In fact, there are a few explicit 
counterexamples where large degree refutations are 
necessary [16]. Nevertheless, for many problems of 
practical interest, it is often the case that it is pos­
sible to prove infeasibility using relatively low­degree 
certificates. There is significant numerical evidence 
that this is the case, as indicated by the large num­
ber of practical applications where SDP relaxations 
based on these techniques have provided solutions of 
very high quality. 
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Degree \ Field 
Linear 

Complex 
Range/Kernel 
Linear Algebra 

Polynomial Nullstellensatz 
Bounded degree: Linear Algebra 

Groebner bases 

Real 
Farkas Lemma 

Linear Programming 
Positivstellensatz 

Bounded degree: SDP 

⎤ 

Table 1: Infeasibility certificates and associated computational techniques. 

Of course, we are concerned with the effective com­ For instance, for D = 4 we find the certificate 
putation of these certificates. For the cases of Theo­

t1 = 3x1 + x1 − 3x2 + 6x2 − 2,

rems 2–4, the corresponding refutations can be ob­

−


tained using either linear algebra, linear program­ s1 = 3, s2 = 1, s12 = 0,

ming, or Groebner bases techniques (see [8] for a su­


2 2 

4 3 2 2 2 2 2perb introduction to Groebner bases). s0 = 3x1 + 2x1 + 6x1x2 − 6x1x2 − x x1x2+1 −
4 3 2+3x2 + 2x2 − x2 − 3x2 + 3 

For the Positivstellensatz, we notice that the cones ⎡ 
6 −3 −3 0 0 −3 

4 2 1
and ideals as defined above are always convex sets in 
the space of polynomials. A key consequence is that 1 T 

⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎦ 

−3 
−3 

0 1 
2 6 −2 0 −3 

4 2the conditions in Theorem 5 for a certificate to ex­ = z z, 
2 0 0 −2 

0 
−7 
18 ist are therefore convex, regardless of any convexity 0 1 −7 

2 
0 

property of the original problem. Even more, the −3 1 −3 0 6 
same property holds if we consider only bounded­
degree sections, i.e., the intersection with the set of where �T2 21 x2 x x1 x1x2 xpolynomials of degree less than or equal to a given z = .2 1 
number D. In this case, the conditions in the P­
satz have exactly the form of a SOS program! Of 
course, as discussed earlier, this implies that we can 
find bounded­degree certificates, by solving semidefi­
nite programs. In Table 1 we present a summary of 
the infeasibility certificates discussed, and the associ­
ated computational techniques. 

Example 3 Consider again the system (1). We will 
show that it has no solutions (x1, x2) ∈ R2 . By the P­
satz, the system is infeasible if and only if there exist 
polynomials t1, s0, s1, s2, s12 ∈ R[x1, x2] that satisfy 

The resulting identity (3) thus certifies the inconsis­
tency of the system {f1 = 0, g1 ≥ 0, g2 ≥ 0}. 

As outlined in the preceding paragraphs, there is a 
direct connection going from general polynomial op­
timization problems to SDP, via P­satz infeasibility 
certificates. Pictorially, we have the following: 

Polynomial systems 
⇓

P­satz certificates 
⇓

SOS programs 
⇓

SDP 

Even though we have discussed only feasibility prob­
lems, there are obvious straightforward connections 
with optimization. By considering the emptiness of 
the sublevel sets of the objective function, sequences 

1,+ s0 + s1 · g2 

ideal(f1 ) cone(g1 ,g2 ) 

(3) 
where s0, s1, s2 and s12 are SOS. 

g1 + s2 · g2 + s12 · of converging bounds indexed by certificate degree 
can be directly constructed. 

4 Further developments and


t1f1 · ≡ −g1 ·

A SOS relaxation is obtained by looking for solu­ applications 
tions where all the terms in the left­hand side have 
degree less than or equal to D. For each fixed integer We have covered only the core elements of the 
D > 0 this can be tested by semidefinite programming. SOS/SDP approach. Much more is known, and even 
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more still remains to be discovered, both in the theo­
retical and computational ends. Some specific issues 
are discussed below. 

Exploiting structure and numerical computa­
tion To what extent can the inherent structure in 
SOS programs be exploited for efficient computa­
tions? Given the algebraic origins of the formulation, 
it is perhaps not surprising to find that several intrin­
sic properties of the input polynomials can be prof­
itably used [29]. In this direction, symmetry reduc­
tion techniques have been employed by Gatermann 
and Parrilo in [14] to provide novel representations 
for symmetric polynomials. Kojima, Kim and Waki 
[20] have recently presented some results for sparse 
polynomials. Parrilo [31] and Laurent [23] have ana­
lyzed the further simplifications that occur when the 
inequality constraints define a zero­dimensional ideal. 

Other relaxations Lasserre [21, 22] has indepen­
dently introduced a scheme for polynomial optimiza­
tion dual to the one described here, but relying on 
Putinar’s representation theorem for positive poly­
nomials rather than the P­satz. There are very inter­
esting relationship between SOS­based methods and 
earlier relaxation and approximation schemes, such 
as Lovász­Schrijver and Sherali­Adams. Laurent [24] 
analyzes this in the specific case of 0­1 programming. 

Implementations The software SOSTOOLS [36] 
is a free, third­party MATLAB1 toolbox for formu­
lating and solving general sum of squares programs. 
The related sofware Gloptipoly [17] is oriented to­
ward global optimization problems. In their current 
version, both use the SDP solver SeDuMi [41] for nu­
merical computations. 

Approximation properties There are several im­
portant open questions regarding the provable qual­
ity of the approximations. In this direction, De Klerk 
and Pasechnik [11] have established some approxima­
tions guarantees of a SOS­based scheme for the ap­
proximation of the stability number of a graph. Re­
cently, De Klerk, Laurent and Parrilo [10] have shown 
that a related procedure based on a result by Pólya 
provides a polynomial­time approximation scheme 
(PTAS) for polynomial optimization over simplices. 

Applications There are many exciting applica­
tions of the ideas described here. The descriptions 
that follow are necessarily brief; our main objective 

1A registered trademark of The MathWorks, Inc. 
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here is to provide the reader with some good starting 
points to this growing literature. 

In systems and control theory, the techniques have 
provided some of the best available analysis and de­
sign methods, in areas such as nonlinear stability and 
robustness analysis [30, 28, 35], state feedback control 
[19], fixed­order controllers [18], nonlinear synthesis 
[37], and model validation [34]. Also, there have been 
interesting recent applications in geometric theorem 
proving [33] and quantum information theory [12, 13]. 

Acknowledgments: The author would like to thank 
Etienne de Klerk and Luis Vicente for their helpful 
comments and suggestions. 
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bases for integer programming, Appl. Algebra En­
grg. Comm. Comput. 8 (1997), no. 4, 241–256. MR 
98i:90055 

[43]	 M. Todd, Semidefinite optimization, Acta Numerica 
10 (2001), 515–560. 

[44]	 L. Vandenberghe and S. Boyd, Semidefinite program­
ming, SIAM Review 38 (1996), no. 1, 49–95. 

[45]	 H. Wolkowicz, R. Saigal, and L. Vandenberghe 
(eds.), Handbook of semidefinite programming, 
Kluwer, 2000. 

8 


	Introduction
	Sums of squares and SOS programs
	Algebra and optimization
	Further developments and applications

