
Chapter 10

Pulse Characterization

Characterization of ultrashort laser pulses with pulse widths greater than
20ps can be directly performed electronically using high speed photo detec-
tors and sampling scopes. Photo detectors with bandwidth of 100 GHz are
available. For shorter pulses usually some type of autocorrelation or cross-
correlation in the optical domain using nonlinear optical effects has to be
performed, i.e. the pulse itself has to be used to measure its width, because
there are no other controllable events available on such short time scales.

10.1 Intensity Autocorrelation

Pulse duration measurements using second-harmonic intensity autocorrela-
tion is a standard method for pulse characterisation. Figure 10.1 shows the
setup for a background free intensity autocorrelation. The input pulse is split
in two, and one of the pulses is delayed by τ . The two pulses are focussed
into a nonliner optical crystal in a non-colinear fashion. The nonlinear opti-
cal crystal is designed for efficient second harmonic generation over the full
bandwidth of the pulse, i.e. it has a large second order nonlinear optical
suszeptibility and is phase matched for the specific wavelength range. We
do not consider the z—dependence of the electric field and phase—matching
effects. To simplify notation, we omit normalization factors. The induced
nonlinear polarization is expressed as a convolution of two interfering electric—
fields E1(t), E2(t) with the nonlinear response function of the medium, the
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334 CHAPTER 10. PULSE CHARACTERIZATION

second order nonlinear susceptibility χ(2).

P (2)(t) ∝
ZZ ∞

−∞
χ(2)(t− t1, t− t2) ·E1(t1) · E2(t2)dt1dt2

Figure 10.1: Setup for a background free intensity autocorrelation. To avoid
dispersion and pulse distortions in the autocorrelator reflective optics can be
and a thin crystal has to be used for measureing very short, typically sub-100
fs pulses.

We assume the material response is instantaneous and replace χ(2)(t −
t1, t− t2) by a Dirac delta—function χ(2) · δ(t− t1) · δ(t− t2) which leads to

P (2)(t) ∝ E1(t) · E2(t) (10.1)

Due to momentum conservation, see Figure 10.1, we mayseparate the product
E(t) ·E(t− τ) geometrically and supress a possible background coming from
simple SHG of the individual pulses alone. The signal is zero if the pulses
don’t overlap.

P (2)(t) ∝ E(t) · E(t− τ). (10.2)
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Table 10.1: Pulse shapes and its deconvolution factors

relating FWHM, τ p, of the pulse to FWHM, τA, of the

intensity autocorrelationfunction.

The electric field of the second harmonic radiation is directly proportional to
the polarization, assuming a nondepleted fundamental radiation and the use
of thin crystals. Due to momentum conservation, see Figure 10.1, we find

IAC(τ) ∝
Z ∞

−∞

¯̄̄
A(t)A(t− τ)

¯̄̄2
dt . (10.3)

∝
Z ∞

−∞
I(t)I(t− τ) dt, (10.4)
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with the complex envelopeA(t) and intensity I(t) = |A(t)|2 of the input pulse.
The photo detector integrates because its response is usually much slower
than the pulsewidth. Note, that the intenisty autocorrelation is symmetric
by construction

IAC(τ) = IAC(−τ). (10.5)

It is obvious from Eq.(10.3) that the intensity autocorrelation does not con-
tain full information about the electric field of the pulse, since the phase of
the pulse in the time domain is completely lost. However, if the pulse shape
is known the pulse width can be extracted by deconvolution of the correla-
tion function. Table 10.1 gives the deconvolution factors for some often used
pulse shapes.

10.2 Interferometric Autocorrelation (IAC)

A pulse characterization method, that also reveals the phase of the pulse
is the interferometric autocorrelation introduced by J. C. Diels [2], (Figure
10.2 a). The input beam is again split into two and one of them is delayed.
However, now the two pulses are sent colinearly into the nonlinear crystal.
Only the SHG component is detected after the filter.

Figure 10.2: (a) Setup for an interferometric autocorrelation. (b) Delay
stage, so that both beams are reflected from the same air/medium interface
imposing the same phase shifts on both pulses.
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The total field E(t, τ) after the Michelson-Interferometer is given by the
two identical pulses delayed by τ with respect to each other

E(t, τ) = E(t+ τ) +E(t) (10.6)

= A(t+ τ)ejω⊂(t+τ)ejφCE +A(t)ejωctejφCE . (10.7)

A(t) is the complex amplitude, the term eiω0t describes the oscillation with
the carrier frequency ω0 and φCE is the carrier-envelope phase. Eq. (10.1)
writes

P (2)(t, τ) ∝ ¡A(t+ τ)ejωc(t+τ)ejφCE +A(t)ejωctejφCE
¢2

(10.8)

This is only idealy the case if the paths for both beams are identical. If
for example dielectric or metal beamsplitters are used, there are different
reflections involved in the Michelson-Interferometer shown in Fig. 10.2 (a)
leading to a differential phase shift between the two pulses. This can be
avoided by an exactly symmetric delay stage as shown in Fig. 10.1 (b).
Again, the radiated second harmonic electric field is proportional to the

polarization

E(t, τ) ∝ ¡A(t+ τ)ejωc(t+τ)ejφCE +A(t)ejωc(t)ejφCE
¢2
. (10.9)

The photo—detector (or photomultiplier) integrates over the envelope of each
individual pulse

I(τ) ∝
Z ∞

−∞

¯̄̄ ¡
A(t+ τ)ejωc(t+τ) +A(t)ejωct

¢2 ¯̄̄2
dt .

∝
Z ∞

−∞

¯̄̄
A2(t+ τ)ej2ωc(t+τ)

+2A(t+ τ)A(t)ejωc(t+τ)ejωct

+A2(t)ej2ωct
¯̄̄2
. (10.10)

Evaluation of the absolute square leads to the following expression

I(τ) ∝
Z ∞

−∞

h
|A(t+ τ)|4 + 4|A(t+ τ)|2|A(t)|2 + |A(t)|4

+2A(t+ τ)|A(t)|2A∗(t)ejωcτ + c.c.
+2A(t)|A(t+ τ)|2A∗(t+ τ)e−jωcτ + c.c.

+A2(t+ τ)(A∗(t))2ej2ωcτ + c.c.
i
dt . (10.11)
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The carrier—envelope phase φCE drops out since it is identical to both pulses.
The interferometric autocorrelation function is composed of the following
terms

I(τ) = Iback + Iint(τ) + Iω(τ) + I2ω(τ) . (10.12)

Background signal Iback:

Iback =

Z ∞

−∞

¡|A(t+ τ)|4 + |A(t)|4¢ dt = 2

Z ∞

−∞
I2(t) dt (10.13)

Intensity autocorrelation Iint(τ):

Iint(τ) = 4

Z ∞

−∞
|A(t+ τ)|2|A(t)|2 dt = 4

Z ∞

−∞
I(t+ τ) · I(t) dt (10.14)

Coherence term oscillating with ωc: Iω(τ):

Iω(τ) = 4

Z ∞

−∞
Re
hµ

I(t) + I(t+ τ)

¶
A∗(t)A(t+ τ)ejωτ

i
dt (10.15)

Coherence term oscillating with 2ωc: I2ω(τ):

Iω(τ) = 2

Z ∞

−∞
Re
h
A2(t)(A∗(t+ τ))2ej2ωτ

i
dt (10.16)

Eq. (10.12) is often normalized relative to the background intensity Iback
resulting in the interferometric autocorrelation trace

IIAC(τ) = 1 +
Iint(τ)

Iback
+

Iω(τ)

Iback
+

I2ω(τ)

Iback
. (10.17)

Eq. (10.17) is the final equation for the normalized interferometric auto-
correlation. The term Iint(τ) is the intensity autocorrelation, measured by
non—colinear second harmonic generation as discussed before. Therefore, the
averaged interferometric autocorrelation results in the intensity autocorrela-
tion sitting on a background of 1.
Fig. 10.3 shows a calculated and measured IAC for a sech-shaped pulse.
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Figure 10.3: Computed and measured interferometric autocorrelation traces
for a 10 fs long sech-shaped pulse.

As with the intensity autorcorrelation, by construction the interferometric
autocorrelation has to be also symmetric:

IIAC(τ) = IIAC(−τ) (10.18)

This is only true if the beam path between the two replicas in the setup
are completely identical, i.e. there is not even a phase shift between the
two pulses. A phase shift would lead to a shift in the fringe pattern, which
shows up very strongly in few-cycle long pulses. To avoid such a symmetry
breaking, one has to arrange the delay line as shown in Figure 10.2 b so
that each pulse travels through the same amount of substrate material and
undergoes the same reflections.
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At τ = 0, all integrals are identical

Iback ≡ 2
Z
|A(t)|4dt

Iint(τ = 0) ≡ 2
Z
|A2(t)|2dt = 2

Z
|A(t)|4dt = Iback

Iω(τ = 0) ≡ 2
Z
|A(t)|2A(t)A∗(t)dt = 2

Z
|A(t)|4dt = Iback

I2ω(τ = 0) ≡ 2
Z

A2(t)(A2(t)∗dt = 2

Z
|A(t)|4dt = Iback

(10.19)

Then, we obtain for the interferometric autocorrelation at zero time delay

IIAC(τ)|max = IIAC(0) = 8

IIAC(τ → ±∞) = 1

IIAC(τ)|min = 0

(10.20)

This is the important 1:8 ratio between the wings and the pick of the IAC,
which is a good guide for proper alignment of an interferometric autocorre-
lator. For a chirped pulse the envelope is not any longer real. A chirp in the
pulse results in nodes in the IAC. Figure 10.4 shows the IAC of a chirped
sech-pulse

A(t) =

µ
sech

µ
t

τ p

¶¶(1+jβ)

for different chirps.
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Figure 10.4: Influence of increasing chirp on the IAC.

10.2.1 Interferometric Autocorrelation of an Unchirped
Sech-Pulse

Envelope of an unchirped sech-pulse

A(t) = sech(t/τ p) (10.21)

Interferometric autocorrelation of a sech-pulse

IIAC(τ) = 1 + {2 + cos (2ωcτ)}
3
³³

τ
τp

´
cosh

³
τ
τp

´
− sinh

³
τ
τp

´´
sinh3

³
τ
τp

´ (10.22)

+
3
³
sinh

³
2τ
τp

´
−
³
2τ
τp

´´
sinh3

³
τ
τp

´ cos(ωcτ)
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10.2.2 Interferometric Autocorrelation of a Chirped
Gaussian Pulse

Complex envelope of a Gaussian pulse

A(t) = exp

∙
−1
2

µ
t

tp

¶
(1 + jβ)

¸
. (10.23)

Interferometric autocorrelation of a Gaussian pulse

IIAC(τ) = 1 +

½
2 + e

−β2

2

³
τ
τp

´2
cos(2ωcτ)

¾
e
−1
2

³
τ
τp

´2
(10.24)

+4e
− 3+β2

8

³
τ
τp

´2
cos

Ã
β

4

µ
τ

τ p

¶2!
cos (ωcτ) .

10.2.3 Second Order Dispersion

It is fairly simple to compute in the Fourier domain what happens in the
presence of dispersion.

E(t) = A(t)ejωct
F−→ Ẽ(ω) (10.25)

After propagation through a dispersive medium we obtain in the Fourier
domain.

Ẽ0(ω) = Ẽ(ω)e−iΦ(ω)

and

E0(t) = A0(t)ejωct

Figure 10.5 shows the pulse amplitude before and after propagation through
a medium with second order dispersion. The pulse broadens due to the dis-
persion. If the dispersion is further increased the broadening increases and
the interferometric autocorrelation traces shown in Figure 10.5 develope a
characteristic pedestal due to the term Iint. The width of the interferomet-
rically sensitive part remains the same and is more related to the coherence
time in the pulse, that is proportional to the inverse spectral width and does
not change.
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Figure 10.5: Effect of various amounts of second order dispersion on a trans-
form limited 10 fs Sech-pulse.

10.2.4 Third Order Dispersion

We expect, that third order dispersion affects the pulse significantly for

D3

τ 3
> 1

which is for a 10fs sech-pulse D3 >
¡
10 fs
1.76

¢3
˜183 fs3. Figure 10.6 and 10.7

show the impact on pulse shape and interferometric autocorrelation. The
odd dispersion term generates asymmetry in the pulse. The interferometric
autocorrelation developes characteristic nodes in the wings.
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Figure 10.6: Impact of 200 fs3 third order dispersion on a 10 fs pulse at a
center wavelength of 800 nm.and its interferometric autocorrelation.

Figure 10.7: Changes due to increasing third order Dispersion from 100-1000
fs3on a 10 fs pulse at a center wavelength of 800 nm.
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10.2.5 Self-Phase Modulation

Self-phase modulation without compensation by proper negative dispersion
generates a phase over the pulse in the time domain. This phase is invisible
in the intensity autocorrelation, however it shows up clearly in the IAC, see
Figure 10.8 for a Gaussian pulse with a peak nonlinear phase shift φ0 =
δA20 = 2 and Figure 10.8 for a nonlinear phase shift φ0 = 3.

Figure 10.8: Change in pulse shape and interferometric autocorrelation in
a 10 fs pulse at 800 nm subject to pure self-phase modulation leading to a
nonlinear phase shift of φ0 = 2.
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Figure 10.9: Change in pulse shape and interferometric autocorrelation in
a 10 fs pulse at 800 nm subject to pure self-phase modulation leading to a
nonlinear phase shift of φ0 = 3.

From the expierence gained by looking at the above IAC-traces for pulses
undergoing second and third order dispersions as well as self-phase modula-
tion we conclude that it is in general impossible to predict purely by looking
at the IAC what phase perturbations a pulse might have. Therefore, it was
always a wish to reconstruct uniquely the electrical field with respect to am-
plitude and phase from the measured data. In fact one can show rigorously,
that amplitude and phase of a pulse can be derived uniquely from the IAC
and the measured spectrum up to a time reversal ambiguityn [1]. Further-
more, it has been shown that a cross-correlation of the pulse with a replica
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chirped in a known medium and the pulse spectrum is enough to reconstruct
the pulse [3]. Since the spectrum of the pulse is already given only the phase
has to be determined. If a certain phase is assumed, the electric field and
the measured cross-correlation or IAC can be computed. Minimization of
the error between the measured cross-correlation or IAC will give the de-
sired spectral phase. This procedure has been dubbed PICASO (Phase and
Intenisty from Cross Correlation and Spectrum Only).

Note, also instead of measuring the autocorrelation and interferometric
autocorrelation with SHG one can also use two-photon absorption or higher
order absorption in a semiconductor material (Laser or LED) [4].

However today, the two widely used pulse chracterization techniques are
Frequency Resolved Optical Gating (FROG) and Spectral Phase Interferom-
etry for Direct Electric Field Reconstruction (SPIDER)

10.3 Frequency Resolved Optical Gating (FROG)

We follow closely the bock of the FROG inventor Rich Trebino. In frequency
resolved optical gating, the pulse to be characterized is gated by another
ultrashort pulse [5]. The gating is no simple linear sampling technique, but
the pulses are crossed in a medium with an instantaneous nonlinearity (χ(2)

or χ(3)) in the same way as in an autocorrelation measurement (Figures 10.1
and 10.10). The FROG—signal is a convolution of the unknown electric—field
E(t) with the gating—field g(t) (often a copy of the unknown pulse itself).
However, after the interaction of the pulse to be measured and the gate
pulse, the emitted nonlinear optical radiation is not put into a simple photo
detector, but is instead spectrally resolved detected. The general form of the
frequency—resolved intensity, or Spectrogram SF (τ , ω) is given by

SF (τ , ω) ∝
¯̄̄̄Z ∞

−∞
E(t) · g(t− τ)e−jω tdt

¯̄̄̄2
. (10.26)
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Figure 10.10: The spectrogram of a waveform E(t) tells the intensity and
frequency in a given time interval [5].

Representations of signals, or waveforms in general, by time-frequency
distributions has a long history. Most notabley musical scores are a temporal
sequence of tones giving its frequency and volume, see Fig. 10.11.

Figure 10.11: A musical score is a time-frequency representation of the signal
to be played.

Time-frequency representations are well known in the radar community,
signal processing and quantummechanics [9] (Spectrogram, Wigner-Distribution,
Husimi-Distribution, ...), Figure 10.12 shows the spectrogram of differently
chirped pulses. Like a mucical score, the spectrogram visually displays the
frequency vs. time.

Image removed due to copyright considerations.



10.3. FREQUENCY RESOLVED OPTICAL GATING (FROG) 349

Figure 10.12: Like a musical score, the spectrogram visually displays the
frequency vs. time [5].

Note, that the gate pulse in the FROG measurement technique does not
to be very short. In fact if we have

g(t) ≡ δ(t) (10.27)

then

SF (τ , ω) = |E(τ)|2 (10.28)

and the phase information is completely lost. There is no need for short
gate pulses. A gate length of the order of the pulse length is sufficient. It
temporally resolves the slow components and spectrally the fast components.

10.3.1 Polarization Gate FROG

Figure 10.13 shows the setup [6][7]. FROG is based on the generation of
a well defined gate pulse, eventually not yet known. This can be achieved
by using the pulse to be measured and an ultrafast nonlinear interaction.
For example the electronic Kerr effect can be used to induce an ultrafast
polarization modulation, that can gate the pulse with a copy of the same
pulse.

Image removed due to copyright considerations.
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Figure 10.13: Polarization Gate FROG setup. The instantaneous Kerr-effect
is used to rotate the polarization of the signal pulse E(t) during the presence
of the gate pulse E(t− τ) proportional to the intensity of the gate pulse [5].

The signal analyzed in the FROG trace is, see Figure 10.14,

Esig(t, τ) = E(t) |E(t− τ)|2 (10.29)

Figure 10.14: The signal pulse reflects the color of the gated pulse at the
time 2τ/3 [5]

Image removed due to copyright considerations.
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The FROG traces generated from a PG-FROG for chirped pulses is iden-
tical to Fig. 10.12. Figure 10.15 shows FROG traces of more complicated
pulses

Figure 10.15: FROG traces of more complicated pulses.

10.3.2 FROG Inversion Algorithm

Spectrogram inversion algorithms need to know the gate function g(t − τ),
which in the given case is related to the yet unknown pulse. So how do we
get from the FROG trace to the pulse shape with respect to amplitude and
phase? If there is such an algorithm, which produces solutions, the question
of uniquness of this solution arises. To get insight into these issues, we realize,
that the FROG trace can be written as

IFROG(τ , ω) ∝
¯̄̄̄Z ∞

−∞
Esig(t, τ)e

−jω tdt

¯̄̄̄2
(10.30)

Writing the signal field as a Fourier transform in the time variable, i.e.

Esig(t, τ) =

Z ∞

−∞
Êsig(t,Ω)e

−jΩ τdΩ (10.31)
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yields

IFROG(τ , ω) ∝
¯̄̄̄Z ∞

−∞

Z ∞

−∞
Êsig(t,Ω)e

−jω t−jΩ τdtdΩ

¯̄̄̄2
. (10.32)

This equation shows that the FROG-trace is the magnitude square of a two-
dimensional Fourier transform related to the signal field Esig(t, τ). The in-
version of Eq.(10.32) is known as the 2D-phase retrival problem. Fortunately
algorithms for this inversion exist [8] and it is known that the magnitude (or
magnitude square) of a 2D-Fourier transform (FT) essentially uniquely de-
termines also its phase, if additional conditions, such as finite support or the
relationship (10.29) is given. Essentially unique means, that there are ambi-
guities but they are not dense in the function space of possible 2D-transforms,
i.e. they have probability zero to occur.
Furthermore, the unknown pulse E(t) can be easily obtained from the

modified signal field Êsig(t,Ω) because

Êsig(t,Ω) =

Z ∞

−∞
Esig(t, τ)e

jΩ τdτ (10.33)

=

Z ∞

−∞
E(t)g(t− τ)e−jΩ τdτ (10.34)

= E(t)G∗(Ω)e−jΩ t (10.35)

with

G(Ω) =

Z ∞

−∞
g(τ)e−jΩ τdτ. (10.36)

Thus there is

E(t) ∝ Êsig(t, 0). (10.37)

The only condition is that the gate function should be chosen such that
G(Ω) 6= 0. This is very powerful.

Fourier Transform Algorithm

The Fourier transform algorithm also commonly used in other phase retrieval
problems is schematically shown in Fig. 10.16
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Figure 10.16: Fourier transform algorithm for FROG trace inversion. The
blue operations indicate the constraints due to the gating technique used and
the FROG data [5]

Generalized Projections

The signal field Esig(t, τ) has to fulfill two constraints, which define sets see
Fig. 10.17. The intersection between both sets results in yields E(t). Moving
to the closest point in one constraint set and then the other yields conver-
gence to the solution, if the two sets or convex. Unfortunately, the FROG
constraints are not convex. Nevertheless the algorithm works surprisingly
well. For more information consult with reference [5].

Figure 10.17: Generalized Projections applied to FROG [5].
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10.3.3 Second Harmonic FROG

So far we only discussed PG-FROG. However, if we choose a χ(2) nonlinearity,
e.g. SHG, and set the gating—field equal to a copy of the pulse g(t) ≡ E(t),
we are measuring in eq.(10.26) the spectrally resolved autocorrelation signal.
The marginals of the measured FROG-trace do have the following propertiesZ ∞

−∞
SF (τ , ω) dω ∝

Z ∞

−∞
|E(t)|2 · |g(t− τ)|2 dt = IAC(τ). (10.38)

Z ∞

−∞
SF (τ , ω) dτ ∝

¯̄̄̄Z ∞

−∞
Ê(ω) · Ĝ(ω − ω0)2dω0

¯̄̄̄
=
¯̄̄
Ê2ω(ω)

¯̄̄2
. (10.39)

For the case, where g(t) ≡ E(t),we obtainZ ∞

−∞
SF (τ , ω) dω ∝ IAC(τ). (10.40)

Z ∞

−∞
SF (τ , ω) dτ ∝

¯̄̄
Ê2ω(ω)

¯̄̄2
. (10.41)

The setup to measure the Frog-trace is identical with the setup to measure
the intensity autocorrelation function (Figure 10.1) only the photodector for
the second harmonic is replaced by a spectrometer (Figure 10.18).

Figure 10.18: SHG-FROG setup.
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Since the intensity autocorrelation function and the integrated spectrum
can be measured simultaneously, this gives redundancy to check the correct-
ness of all measurements via the marginals (10.38, 10.39). Figure 10.19 shows
the SHG-FROG trace of the shortest pulses measured sofar with FROG.

Figure 10.19: FROG measurement of a 4.5 fs laser pulse.

Baltuska, Pshenichnikov, and Wiersma. Journal of Quantum Electronics 35 (1999): 459. 

Image removed due to copyright restrictions. 
 
Please see:
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Figure 10.20: FROG geometries and their pros and cons.
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10.3.4 FROG Geometries

The Frog-signal Esig.can also be generated by a nonlinear interaction different
from SHG or PG, see table 10.20[5].

Figure by MIT OCW.
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10.4 Spectral Interferometry and SPIDER

Spectral Phase Interferometry for Direct Electric—Field Reconstruction (SPI-
DER) avoids iterative reconstruction of the phase profile. Iterative Fourier
transform algorithms do have the disadvantage of sometimes being rather
time consuming, preventing real—time pulse characterization. In addition,
for “pathological" pulse forms, reconstruction is difficult or even impossible.
It is mathematically not proven that the retrieval algorithms are unambigu-
ous especially in the presence of noise.
Spectral shearing interferometry provides an elegant method to overcome

these disadvantages. This technique has been first introduced by C. Iaconis
and I.A. Walmsley in 1999 [11] and called spectral phase interferometry for
direct electric—field reconstruction — SPIDER. Before we discuss SPIDER lets
look at spectral interferometry in general

10.4.1 Spectral Interferometry

The spectrum of a pulse can easily be measured with a spectrometer. The
pulse would be completely know, if we could determine the phase across
the spectrum. To determine this unknown phase spectral interferometry for
pulse measurement has been proposed early on by Froehly and others [12].
If we would have a well referenced pulse with field ER(t), superimpose the
unknown electric field ES(t) delayed with the reference pulse and interfere
them in a spectrometer, see Figure 10.21, we obtain for the spectrometer
output

EI(t) = ER(t) +ES(t− τ) (10.42)

Ŝ(ω) =

¯̄̄̄Z +∞

−∞
EI(t)e

−jωtdt

¯̄̄̄2
=
¯̄̄
ÊR(ω) + ÊS(ω)

−jωτ
¯̄̄2

(10.43)

= ŜDC(ω) + Ŝ(−)(ω)ejωτ + Ŝ(+)(ω)e−jωτ (10.44)

with

Ŝ(+)(ω) = Ê∗R(ω)ÊS(ω) (10.45)

Ŝ(−)(ω) = Ŝ(+)∗(ω) (10.46)

Where (+) and (-) indicate as before, well separted positive and negative
"frequency" signals, where "frequency" is now related to τ rather than ω.
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Figure 10.21: Spectral Interferometery of a signal pulse with a reference
pulse.

If τ is chosen large enough, the inverse Fourier transformed spectrum
S(t) = F−1{Ŝ(ω)} results in well separated signals, see Figure 10.22.

S(t) = SDC(t) + S(−)(t+ τ) + Ŝ(+)(t− τ) (10.47)

Figure 10.22: Decomposition of SPIDER signal.

We can isolate either the positive or negative frequency term with a filter
in the time domain. Back transformation of the corresponding term to the
frequency domain and computation of the spectral phase of one of the terms
results in the spectral phase of the signal up to the known phase of the
reference pulse and a linear phase contribution from the delay.

Φ(+)(ω) = arg{Ŝ(+)(ω)ejωτ} = ϕS(ω)− ϕR(ω) + ωτ (10.48)
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Figure by MIT OCW.

Figure by MIT OCW.
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Figure 10.23: The principle of operation of SPIDER. 

Adapted from F. X. Kaertner. Few-Cycle Laser Pulse Generation and its Applications. 
New York, NY: Springer-Verlag, 2004..

10.4.2 SPIDER

What can we do if we don’t have a well characterized reference pulse? C.
Iaconis and I.A. Walmsley [?] came up with the idea of generating two up-
converted spectra slightly shifted in frequency and to investigate the spectral
interference of these two copies, see Figure 10.23. We use

ER(t) = E(t)ejωSt (10.49)

ES(t) = E(t− τ)ej(ωS+Ω)t (10.50)

EI(t) = ER(t) +ES(t) (10.51)

where ωs and ωs + Ω are the two frequencies used for upconversion and Ω
is called the spectral shear between the two pulses. E(t) is the unknown
electric field with spectrum

Ê(ω) =
¯̄̄
Ê(ω)

¯̄̄
ejϕ(ω) (10.52)

Spectral interferometry using these specially constructed signal and reference
pulses results in

Ŝ(ω) =

¯̄̄̄Z +∞

−∞
EI(t)e

−jωtdt

¯̄̄̄2
= ŜDC(ω)+Ŝ

(−)(ω)ejωτ+Ŝ(+)(ω)e−jωτ (10.53)
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Ŝ(+)(ω) = Ê∗R(ω)ÊS(ω) = Ê∗(ω − ωs)Ê(ω − ωs − Ω) (10.54)

Ŝ(−)(ω) = Ŝ(+)∗(ω) (10.55)

The phase ψ(ω) = arg[Ŝ(+)(ω)e−jωτ ] derived from the isolated positive spec-
tral component is

ψ(ω) = ϕ(ω − ωs − Ω)− ϕ(ω − ωs)− ωτ. (10.56)

The linear phase ωτ can be substracted off after independent determination
of the time delay τ . It is obvious that the spectral shear Ω has to be small
compared to the spectral bandwdith ∆ω of the pulse, see Fig. 10.23. Then
the phase difference in Eq.(10.56) is proportional to the group delay in the
pulse, i.e.

−Ωdϕ

dω
= ψ(ω), (10.57)

or

ϕ(ω) = − 1
Ω

Z ω

0

ψ(ω0)dω0. (10.58)

Note, an error ∆τ in the calibration of the time delay τ results in an error
in the chirp of the pulse

∆ϕ(ω) = −ω2

2Ω
∆τ . (10.59)

Thus it is important to chose a spectral shear Ω that is not too small. How
small does it need to be? We essentially sample the phase with a sample
spacing Ω. The Nyquist theorem states that we can uniquely resolve a pulse
in the time domain if it is only nonzero over a length [−T, T ], where T = π/Ω.
On the other side the shear Ω has to be large enough so that the fringes in
the spectrum can be resolved with the available spectrometer.
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Figure 10.24: SPIDER setup; SF10: 65mm glass block (GDD/z ≈
160 fs2/mm), BS: metallic beam splitters (≈ 200µm, Cr—Ni coating 100nm),
τ : adjustable delay between the unchirped replica, τSHG: delay between
unchirped pulses and strongly chirp pulse, RO: reflective objective (Ealing—
Coherent, x35, NA=0.5, f=5.4mm), TO: refractive objective , L: lens, spec-
trometer: Lot-Oriel MS260i, grating: 400 l/mm, Blaze—angle 350nm, CCD:
Andor DU420 CCI 010, 1024 x 255 pixels, 26µm/pixel [13].

Generation of two replica without additional chirp:

A Michelson—type interferometer generates two unchirped replicas. The
beam—splitters BS have to be broadband, not to distort the pulses. The
delay τ between the two replica has to be properly chosen, i.e. in the setup
shown it was about 400-500 fs corresponding to 120-150 µm distance in space.

Courtesy of Richard Ell. Used with permission.

SPIDER Setup

We follow the work of Gallmann et al. [?] that can be used for characteri-
zation of pulses only a few optical cycles in duration. The setup is shown in
Figure 10.24.
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Spectral shearing:

The spectrally sheared copies of the pulse are generated by sum-frequency
generation (SFG) with quasi-monochromatic beams at frequencies ωs and
ωs + Ω. These quasi monochromatic signals are generated by strong chirp-
ing of a third replica (cf. Fig. 10.24) of the signal pulse that propagates
through a strongly dispersive glass slab. For the current setup we estimate
for the broadening of a Gaussian pulse due to the glass dispersion from 5 fs
to approximately 6ps. Such a stretching of more than a factor of thou-
sand assures that SFG occurs within an optical bandwidth less than 1nm, a
quasi—monochromatic signal. Adjustment of the temporal overlap τSHG with
the two unchirped replica is possible by a second delay line. The streched
pulse can be computed by propagation of the signal pulse E(t) through the
strongly dispersive medium with transfer characteristic

Hglass(ω) = e−jDglass(ω−ωc)2/2 (10.60)

neglecting linear group delay and higher order dispersion terms. We otain for
the analytic part of the electric field of the streched pulse leaving the glass
block by convolution with the transfer characteristic

Estretch(t) =

+∞Z
−∞

Ê(ω)e−jDglass(ω−ωc)2/2ejωtdω = (10.61)

= ejt
2/(2Dglass)ejωct

+∞Z
−∞

Ê(ω)e−jDglass((ω−ωc)−t/Dglass
2)/2dω(10.62)

If the spectrum of the pulse is smooth enough, the stationary phase method
can be applied for evaluation of the integral and we obtain

Estretch(t) ∝ ejωc(t+t
2/(2Dglass)Ê(ω = ωc + t/Dglass) (10.63)

Thus the field strength at the position where the instantaneous frequency is

ωinst =
d

dt
ωc(t+ t2/(2Dglass) = ωc + t/Dglass (10.64)

is given by the spectral amplitude at that frequency, Ê(ω = ωc + t/Dglass).
For large stretching, i.e.

|τ p/Dglass| ¿ |Ω| (10.65)

the up-conversion can be assumed to be quasi monochromatic.
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SFG:

A BBO crystal (wedged 10—50µm) is used for type I phase—matched SFG.
Type II phase—matching would allow for higher acceptance bandwidths. The
pulses are focused into the BBO—crystal by a reflective objective composed of
curved mirrors. The signal is collimated by another objective. Due to SFG
with the chirped pulse the spectral shear is related to the delay between both
pulses, τ , determined by Eq.(10.64) to be

Ω = −τ/Dglass. (10.66)

Note, that conditions (10.65) and (10.66) are consistent with the fact that
the delay between the two pulses should be much larger than the pulse width
τ p which also enables the separation of the spectra in Fig.10.22 to determine
the spectral phase using the Fourier transform method. For characterization
of sub-10fs pulses a crystal thickness around 30µm is a good compromise.
Efficiency is still high enough for common cooled CCD—cameras, dispersion
is already sufficiently low and the phase matching bandwidth large enough.

Signal detection and phase reconstruction:

An additional lens focuses the SPIDER signal into a spectrometer with a
CCD camera at the exit plane. Data registration and analysis is performed
with a computer. The initial search for a SPIDER signal is performed by
chopping and Lock—In detection.The chopper wheel is placed in a way that
the unchirped pulses are modulated by the external part of the wheel and the
chirped pulse by the inner part of the wheel. Outer and inner part have dif-
ferent slit frequencies. A SPIDER signal is then modulated by the difference
(and sum) frequency which is discriminated by the Lock—In amplifier. Once
a signal is measured, further optimization can be obtained by improving the
spatial and temporal overlap of the beams in the BBO—crystal.
One of the advantages of SPIDER is that only the missing phase informa-

tion is extracted from the measured data. Due to the limited phase—matching
bandwidth of the nonlinear crystal and the spectral response of grating and
CCD, the fundamental spectrum is not imaged in its original form but rather
with reduced intensity in the spectral wings. But as long as the interference
fringes are visible any damping in the spectral wings and deformation of
the spectrum does not impact the phase reconstruction process the SPIDER
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technique delivers the correct information. The SPIDER trace is then gen-
erated by detecting the spectral interference of the pulses

ER(t) = E(t)Ê(ωs)e
jωSt (10.67)

ES(t) = E(t− τ)Ê(ωs + Ω)ej(ωS+Ω)t (10.68)

EI(t) = ER(t) +ES(t) (10.69)

The positive and negative frequency components of the SIDER trace are then
according to Eqs.(??,10.55)

Ŝ(+)(ω) = Ê∗R(ω)ÊS(ω) = Ê∗(ω − ωs)Ê(ω − ωs − Ω)Ê∗(ωs)Ê(ωs − Ω)(10.70)

Ŝ(−)(ω) = Ŝ(+)∗(ω) (10.71)

and the phase ψ(ω) = arg[Ŝ(+)(ω)e−jωτ ] derived from the isolated positive
spectral component substraction already the linear phase off is

ψ(ω) = ϕ(ω−ωs−Ω)−ϕ(ω−ωs)−ϕ(ω−ωs−Ω)+ϕ(ωs−Ω)−ϕ(ωs). (10.72)

Thus up to an additional constant it delivers the group delay within the pulse
to be characterized. A constant group delay is of no physical significance.

SPIDER—Calibration

This is the most critical part of the SPIDER measurement. There are three
quantities to be determined with high accuracy and reproducibility:

• delay τ
• shift ωs

• shear Ω

Delay τ :
The delay τ is the temporal shift between the unchirped pulses. It appears
as a frequency dependent phase term in the SPIDER phase, Eqs. (10.56)
and leads to an error in the pulse chirp if not properly substracted out, see
Eq.(10.59).
A determination of τ should preferentially be done with the pulses de-

tected by the spectrometer but without the spectral shear so that the ob-
served fringes are all exactly spaced by 1/τ . Such an interferogram may
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be obtained by blocking the chirped pulse and overlapping of the individual
SHG signals from the two unchirped pulses. A Fourier transform of the inter-
ferogram delivers the desired delay τ .In practice, this technique might be dif-
ficult to use. Experiment and simulation show that already minor changes of
τ (±1 fs) significantly alter the reconstructed pulse duration (≈ ± 1− 10%).
Another way for determination of τ is the following. As already men-

tioned, τ is accessible by a differentiation of the SPIDER phase with respect
to ω. The delay τ therefore represents a constant GDD. An improper de-
termination of τ is thus equivalent to a false GDD measurement. The real
physical GDD of the pulse can be minimized by a simultaneous IAC mea-
surement. Maximum signal level, respectively shortest IAC trace means an
average GDD of zero. The pulse duration is then only limited by higher
order dispersion not depending on τ . After the IAC measurement, the delay
τ is chosen such that the SPIDER measurement provides the shortest pulse
duration. This is justified because through the IAC we know that the pulse
duration is only limited by higher order dispersion and not by the GDD ∝ τ .
The disadvantage of this method is that an additional IAC setup is needed.
Shift ωs:
The SFG process shifts the original spectrum by a frequency ωs ≈ 300THz
towards higher frequencies equivalent to about 450nm when Ti:sapphire
pulses are characterized. If the SPIDER setup is well adjusted, the square of
the SPIDER interferogrammeasured by the CCD is similar to the fundamen-
tal spectrum. A determination of the shift can be done by correlating both
spectra with each other. Determination of ωs only influences the frequency
too which we assign a give phase value, which is not as critical.
Shear Ω:
The spectral shear is uncritical and can be estimated by the glass dispersion
and the delay τ .

10.4.3 Characterization of Sub-Two-Cycle Ti:sapphire
Laser Pulses

The setup and the data registration and processing can be optimized such
that the SPIDER interferogram and the reconstructed phase, GDD and in-
tensity envelope are displayed on a screen with update rates in the range of
0.5-1s.
Real—time SPIDER measurements enabled the optimization of external
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dispersion compensation leading to 4.8 fs pulses directly from a laser [13], see
Figure 10.25.

Figure 10.25: SPIDER measurement of a 4.8 fs Ti:sapphire laser pulse. (a)
SPIDER interferogram on a logarithmic scale. (b) Spectral power density and
spectral phase of the pulse. (c) Calculated GDD of the pulse. (d) Intensity
envelope and temporal phase curve [13].

Figure 10.25(a) shows the SPIDER interferogram as detected by the CCD
camera. The interferogram is modulated up to 90%, the resolutions limit in
the displayed graphic can not resolve this. The large number of interfer-
ence fringes assures reliable phase calculation. Figure (b) displays the laser
spectrum registered by the optical spectrum analyzer on a logarithmic scale.
The calculated spectral phase curve is added in this plot. The small slope
of the phase curve corresponds to a constant GD which is an unimportant
time shift. Fig. 10.25 (c) depicts the GDD obtained from the phase by two
derivatives with respect to the angular frequency ω. The last Figure (d)

Courtesy of Richard Ell. Used with permission.
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shows the intensity envelope with a FWHM pulse duration of 4.8 fs together
with the temporal phase curve.

10.4.4 Pros and Cons of SPIDER
Advantages Disadvantages
direct analytical phase extraction complex experimental setup

no moving mirrors or other components precise delay calibration necessary

possible real—time characterization “compact" spectrum necessary
(no zero-intensity intervals)

simple 1—D data acquisition need for expensive CCD—camera

minor dependence on spectral response
of nonlinear crystal and spectrometer



368 CHAPTER 10. PULSE CHARACTERIZATION



Bibliography

[1] K. Naganuma, K. Mogi, H. Yamada, "General method for ultrashort
light pulse chirp measurement," IEEE J. of Quant. Elec. 25, 1225 -
1233 (1989).

[2] J. C. Diels, J. J. Fontaine, and F. Simoni, "Phase Sensitive Measurement
of Femtosecond Laser Pulses From a Ring Cavity," in Proceedings of the
International Conf. on Lasers. 1983, STS Press: McLean, VA, p. 348-355.
J. C. Diels et al.,"Control and measurement of Ultrashort Pulse Shapes
(in Amplitude and Phase) with Femtosecond Accuracy," Applied Optics
24, 1270-82 (1985).

[3] J.W. Nicholson, J.Jasapara, W. Rudolph, F.G. Ometto and A.J. Taylor,
"Full-field characterization of femtosecond pulses by spectrum and cross-
correlation measurements, "Opt. Lett. 24, 1774 (1999).

[4] D. T. Reid, et al., Opt. Lett. 22, 233-235 (1997).

[5] R. Trebino, "Frequency-Resolved Optical Gating: the Measurement of
Ultrashort Laser Pulses,"Kluwer Academic Press, Boston, (2000).

[6] Trebino, et al., Rev. Sci. Instr., 68, 3277 (1997).

[7] Kane and Trebino, Opt. Lett., 18, 823 (1993).

[8] Stark, Image Recovery, Academic Press, 1987.

[9] L. Cohen, "Time-frequency distributions-a review, " Proceedings of the
IEEE, 77, 941 - 981 (1989).

369



370 BIBLIOGRAPHY

[10] L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer and U. Keller,
"Characterization of sub-6fs optical pulses with spectral phase inter-
ferometry for direct electric-field reconstruction," Opt. Lett. 24, 1314
(1999).

[11] C. Iaconis and I. A. Walmsley, Self-Referencing Spectral Interferometry
for Measuring Ultrashort Optical Pulses, IEEE J. of Quant. Elec. 35,
501 (1999).

[12] C. Froehly, A. Lacourt, J. C. Vienot, "Notions de reponse impulsionelle
et de fonction de tranfert temporelles des pupilles opticques, justifica-
tions experimentales et applications," Nouv. Rev. Optique 4, 18 (1973).

[13] Richard Ell, "Sub-Two Cycle Ti:sapphire Laser and Phase Sensitive
Nonlinear Optics," PhD-Thesis, University of Karlsruhe (TH), (2003).


