
Chapter 5

Active Mode Locking

For simplicity, we assume, that the laser operates in the transverse fundamen-
tal modes and, therefore, we only have to treat the longitudinal modes of the
laser similar to a simple plane parallel Fabry-Perot resonator (Figure: 5.1).
We consider one polarization of the field only, however, as we will say later
for some mode-locked laser polarization dynamics will become important.

The task of mode-locking is to get as many of the longitudinal modes
lasing in a phase synchronous fashion, such that the superposition of all
modes represents a pulse with a spatial extent much shorter than the cavity.
The pulse will then propagate at the group velocity corresponding to the
center frequency of the pulse.

Figure 5.1: Fabry-Perot resonator
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5.1 The Master Equation of Mode Locking

Lets consider for the moment the cold cavity (i.e. there is only a simple
linear medium in the cavity no lasing). The most general solution for the
intracavity field is a superpositon of left- and rightward running waves

E(left)(z, t) = Re

( ∞X
n=0

Êne
j(Ωnt+Knz)

)
, (5.1)

and

E(right)(z, t) = Re

( ∞X
n=0

Êne
j(Ωnt−Knz)

)
. (5.2)

The possible values for the wavenumbers are Kn = nπ/L, resulting from the
boundary conditions on metallic mirrors or periodicity after one roundtrip in
the cavity. If the mirrors are perfectly reflecting, the leftward and rightward
moving waves Eqs.(5.1) and (5.2) contain the same information and it is
sufficient to treat only one of them. Usually one of the cavity mirrors is
not perfectly reflecting in order to couple out light, however, this can be
considered a perturbation to the ideal mode structure.
We consider the modes in Eq.(5.2) as a continuum and replace the sum

by an integral

E(right)(z, t) =
1

2π
Re

½Z ∞

K=0

Ê(K)ej(Ω(K)t−Kz)dK

¾
(5.3)

with
Ê(Km) = Êm2L. (5.4)

Eq.(5.3) is similar to the pulse propagation discussed in chapter 2 and de-
scribes the pulse propagation in the resonator. However, here it is rather
an initial value problem, rather than a boundary value problem. Note, the
wavenumbers of the modes are fixed, not the frequencies. To emphasize this
even more, we introduce a new time variable T = t and a local time frame
t0 = t− z/υg,0, instead of the propagation distance z, where υg,0 is the group
velocity at the central wave number Kn0 of the pulse

υg,0 =
∂ω

∂k

¯̄̄̄
k=0

=

µ
∂k

∂ω

¶−1 ¯̄̄̄¯
ω=0

. (5.5)
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For introduction of a slowly varying envelope, we shift the frequency and
wavenumber by the center frequency ω0 = Ωn0 and center wave number
k0 = Kn0

k = K −Kn0, (5.6)

ω(k) = Ω(Kn0 + k)− Ωn0, (5.7)

Ê(k) = Ê(Kn0 + k), (5.8)

The temporal evolution of the pulse is than determined by

E(right)(z, t) =
1

2π
Re

(Z ∞

−Kn0→−∞
Ê(k)ej(ω(k)t−kz)dk

)
ej(ω0t−k0z). (5.9)

Analogous to chapter 2, we define a slowly varying field envelope, that is
already normalized to the total power flow in the beam

A(z, t) =

r
Aeff

2Z0

1

2π

Z ∞

−∞
Ê(k)ej(ω(k)t−kz)dk. (5.10)

With the retarded time t0 and time T , we obtain analogous to Eq. (2.184).

A(T, t0) =

r
Aeff

2Z0

1

2π

Z ∞

−∞
Ê(k)ej((ω(k)−υg,0k)T+kυg,0t

0
dk. (5.11)

which can be written as

TR
∂A(T, t0)

∂T

¯̄̄̄
(GDD)

= j
∞X
n=2

Dn

µ
−j ∂

n

∂t0

¶n

A(T, t0), (5.12)

with the dispersion coefficients per resonator round-trip TR =
2L
υg,0

Dn =
2L

n!υn+1g,0

∂n−1υg(k)

∂kn−1

¯̄̄̄
¯
k=0

. (5.13)

The dispersion coefficients (5.13) look somewhat suspicious, however, it is
not difficult to show, that they are equivalent to derivatives of the roundtrip
phase φR(Ω) =

Ω
c
n(Ω)2L in the resonator at the center frequency

Dn = − 1
n!

∂nφ
(n)
R (Ω)

∂Ωn

¯̄̄̄
¯
Ω=ω0

, (5.14)
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Sofar, only the lossless resonator is treated. The gain and loss can be mod-
elled by adding a term like

TR
∂A(T, t0)

∂T

¯̄̄̄
(loss)

= −lA(T, t0) (5.15)

where l is the amplitude loss per round-trip. In an analogous manner we can
write for the gain

TR
∂A(T, t0)

∂T

¯̄̄̄
(gain)

=

µ
g(T ) +Dg

∂2

∂t02

¶
A(T, t0), (5.16)

where g(T ) is the gain and and Dg is the curvature of the gain at the maxi-
mum of the Lorentzian lineshape.

Dg =
g(T )

Ω2g
(5.17)

Dg is the gain dispersion. g(T ) is an average gain, which can be computed
from the rate equation valid for each unit cell in the resonator. The dis-
tributed gain obeys the equation

∂g(z, t)

∂t
= −g − g0

τL
− g

|A(z, t)|2
EL

, (5.18)

where EL is the saturation energy EL =
hνL
2∗σL

Aeff , τL the upper state lifetime
and σL the gain cross section. For typical solid-state lasers, the intracavity
pulse energy is much smaller than the saturation energy. Therefore, the gain
changes within one roundtrip are small. Furthermore, we assume that the
gain saturates spatially homogeneous, g(z, t0) = g(t0). Then, the equation for
the average gain g(T ) can be found by averageing (5.18) over one round-trip
and we obtain

∂g(T )

∂T
= −g − g0

τL
− g

W (T )

ELTR
, (5.19)

where W (T ) is the intracavity pulse energy at time t = T

W (T ) =

Z TR/2

t0=−TR/2
|A(T, t0)|2dt0 ≈

Z ∞

−∞
|A(T, t0)|2dt0. (5.20)
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Figure 5.2: Actively modelocked laser with an amplitude modulator
(Acousto-Optic-Modulator).

Taking all effects into account, the linear ones: loss, dispersion, gain and
gain dispersion, as well as the nonlinear ones like saturable absorption and
self-phase modulation, we end up with the master equation of modelocking

TR
∂A(T, t0)

∂T
= −lA(T, t0) + j

∞X
n=2

Dn

µ
j
∂n

∂t

¶n

A(T, t0)

+ g(T )

µ
1 +

1

Ω2g

∂2

∂t02

¶
A(T, t0) (5.21)

− q(T, t0)A(T, t0)− jδ|A(T, t0)|2A(T, t0).
To keep notation simple, we replace t0 by t again. This equation was first
derived by Haus [4] under the assumption of small changes in pulse shape
per round-trip and per element passed within one round-trip.

5.2 Active Mode Locking by Loss Modula-
tion

Active mode locking was first investigated in 1970 by Kuizenga and Siegman
using a gaussian pulse analyses, which we want to delegate to the exercises
[3]. Later in 1975 Haus [4] introduced the master equation approach (5.21).
We follow the approach of Haus, because it also shows the stability of the
solution.
We introduce a loss modulator into the cavity, for example an acousto-

optic modulator, which periodically varias the intracavity loss according to
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Figure 5.3: Schematic representation of the master equation for an actively
mode-locked laser.

q(t) =M (1− cos(ωMt)). The modulation frequency has to be very precisely
tuned to the resonator round-trip time, ωM = 2π/TR, see Fig.5.2. The
modelocking process is then described by the master equation

TR
∂A

∂T
=

∙
g(T ) +Dg

∂2

∂t2
− l −M (1− cos(ωMt))

¸
A. (5.22)

neglecting GDD and SPM. The equation can be interpreted as the total pulse
shaping due to gain, loss and modulator, see Fig.5.3.
If we fix the gain in Eq. (5.22) at its stationary value, what ever it might

be, Eq.(5.22) is a linear p.d.e, which can be solved by separation of variables.
The pulses, we expect, will have a width much shorter than the round-trip
time TR. They will be located in the minimum of the loss modulation where
the cosine-function can be approximated by a parabola and we obtain

TR
∂A

∂T
=

∙
g − l +Dg

∂2

∂t2
−Mst

2

¸
A. (5.23)

Ms is the modulation strength, and corresponds to the curvature of the loss
modulation in the time domain at the minimum loss point

Dg =
g

Ω2g
, (5.24)

Ms =
Mω2M
2

. (5.25)

Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
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The differential operator on the right side of (5.23) corresponds to the Schrödinger-
Operator of the harmonic oscillator problem. Therefore, the eigen functions
of this operator are the Hermite-Gaussians

An(T, t) = An(t)e
λnT/TR , (5.26)

An(t) =

s
Wn

2n
√
πn!τa

Hn(t/τa)e
− t2

2τ2a , (5.27)

where τa defines the width of the Gaussian. The width is given by the fourth
root of the ratio between gain dispersion and modulator strength

τa =
4

q
Dg/Ms. (5.28)

Note, from Eq. (5.26) we can follow, that the gain per round-trip of each
eigenmode is given by λn (or in general the real part of λn), which are given
by

λn = gn − l − 2Msτ
2
a(n+

1

2
). (5.29)

The corresponding saturated gain for each eigen solution is given by

gn =
1

1 + Wn

PLTR

, (5.30)

where Wn is the energy of the corresponding solution and PL = EL/τL the
saturation power of the gain. Eq. (5.29) shows that for given g the eigen
solution with n = 0, the ground mode, has the largest gain per roundtrip.
Thus, if there is initially a field distribution which is a superpostion of all
eigen solutions, the ground mode will grow fastest and will saturate the gain
to a value

gs = l +Msτ
2
a. (5.31)

such that λ0 = 0 and consequently all other modes will decay since λn < 0 for
n ≥ 1. This also proves the stability of the ground mode solution [4]. Thus
active modelocking without detuning between resonator round-trip time and
modulator period leads to Gaussian steady state pulses with a FWHM pulse
width

∆tFWHM = 2 ln 2τa = 1.66τa. (5.32)
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The spectrum of the Gaussian pulse is given by

Ã0(ω) =

Z ∞

−∞
A0(t)e

iωtdt (5.33)

=

q√
πWnτae

− (ωτa)
2

2 , (5.34)

and its FWHM is

∆fFWHM =
1.66

2πτa
. (5.35)

Therfore, the time-bandwidth product of the Gaussian is

∆tFWHM ·∆fFWHM = 0.44. (5.36)

The stationary pulse shape of the modelocked laser is due to the parabolic
loss modulation (pulse shortening) in the time domain and the parabolic
filtering (pulse stretching) due to the gain in the frequency domain, see Figs.
5.4 and 5.5. The stationary pulse is achieved when both effects balance.
Since external modulation is limited to electronic speed and the pulse width
does only scale with the inverse square root of the gain bandwidth actively
modelocking typically only results in pulse width in the range of 10-100ps.

Figure 5.4: (a) Loss modulation gives pulse shortening in each roundtrip
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Figure 5.5: (b) the finite gain bandwidth gives pulse broadening in each
roundtrip. For a certain pulse width there is balance between the two pro-
cesses.

For example: Nd:YAG; 2l = 2g = 10%, Ωg = π∆fFWHM = 0.65 THz,
M = 0.2, fm = 100 MHz,Dg = 0.24 ps2,Ms = 4 · 1016s−1, τ p ≈ 99 ps.
With the pulse width (5.28), Eq.(5.31) can be rewritten in several ways

gs = l +Msτ
2
a = l +

Dg

τ 2a
= l +

1

2
Msτ

2
a +

1

2

Dg

τ 2a
, (5.37)

which means that in steady state the saturated gain is lifted above the loss
level l, so that many modes in the laser are maintained above threshold.
There is additional gain necessary to overcome the loss of the modulator due
to the finite temporal width of the pulse and the gain filter due to the finite
bandwidth of the pulse. Usually

gs − l

l
=

Msτ
2
a

l
¿ 1, (5.38)

since the pulses are much shorter than the round-trip time and the stationary
pulse energy can therefore be computed from

gs =
1

1 + Ws

PLTR

= l. (5.39)
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Figure 5.6: Modelocking in the frequency domain: The modulator transvers
energy from each mode to its neighboring mode, thereby redistributing en-
ergy from the center to the wings of the spectrum. This process seeds and
injection locks neighboring modes.

The name modelocking originates from studying this pulse formation process
in the frequency domain. Note, the term

−M [1− cos(ωMt)]A

does generate sidebands on each cavity mode present according to

−M [1− cos(ωMt)] exp(jωn0t)

= −M
∙
exp(jωn0t)−

1

2
exp(j(ωn0t− ωMt))− 1

2
exp(j(ωn0t+ ωMt))

¸
= M

∙
− exp(jωn0t) +

1

2
exp(jωn0−1t) +

1

2
exp(jωn0+1t)

¸
if the modulation frequency is the same as the cavity round-trip frequency.
The sidebands generated from each running mode is injected into the neigh-
boring modes which leads to synchronisation and locking of neighboring
modes, i.e. mode-locking, see Fig.5.6

5.3 Active Mode-Locking by Phase Modula-
tion

Side bands can also be generated by a phase modulator instead of an am-
plitude modulator. However, the generated sidebands are out of phase with



5.4. ACTIVE MODE LOCKING WITH ADDITIONAL SPM 183

the carrier, which leads to a chirp on the steady state pulse. We can again
use the master equation to study this type of modelocking. All that changes
is that the modulation becomes imaginary, i.e. we have to replace M by jM
in Eq.(5.22)

TR
∂A

∂T
=

∙
g(T ) +Dg

∂2

∂t2
− l − jM (1− cos(ωMt))

¸
A. (5.40)

The imaginary unit can be pulled through much of the calculation and we
arrive at the same Hermite Gaussian eigen solutions (5.26,5.27), however, the
parameter τa becomes τ 0a and is now complex and not quite the pulse width

τ 0a =
4
p
−j 4

q
Dg/Ms. (5.41)

The ground mode or stationary solution is given by

A0(t) =

s
Ws

2n
√
πn!τ 0a

e
− t2

2τ2a

1√
2
(1+j)

, (5.42)

with τa =
4
p
Dg/Ms as before. We end up with chirped pulses. How does

the pulse shortening actually work, because the modulator just puts a chirp
on the pulse, it does actually not shorten it? One can easily show, that if a
Gaussian pulse with chirp parameter β

A0(t) ∼ e
− t2

2τ2a

1√
2
(1+jβ)

, (5.43)

has a chirp β > 1, subsequent filtering is actually shortening the pulse.

5.4 ActiveMode Locking with Additional SPM

Due to the strong focussing of the pulse in the gain medium also additional
self-phase modulation can become important. Lets consider the case of an
actively mode-locked laser with additional SPM, see Fig. 5.7. One can write
down the corresponding master equation

TR
∂A

∂T
=

∙
g(T ) +Dg

∂2

∂t2
− l −Mst

2 − jδ|A|2
¸
A. (5.44)

Unfortunately, there is no analytic solution to this equation. But it is not
difficult to guess what will happen in this case. As long as the SPM is not
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Figure 5.7: Active mode-locking with SPM

excessive, the pulses will experience additional self-phase modulation, which
creates a chirp on the pulse. Thus one can make an ansatz with a chirped
Gaussian similar to (5.43) for the steady state solution of the master equation
(5.44)

A0(t) = Ae
− t2

2τ2a
(1+jβ)+jΨT/TR (5.45)

Note, we allow for an additional phase shift per roundtrip Ψ, because the
added SPM does not leave the phase invariant after one round-trip. This is
still a steady state solution for the intensity envelope. Substitution into the
master equation using the intermediate result

∂2

∂t2
A0(t) =

½
t2

τ 4a
(1 + jβ)2 − 1

τ 2a
(1 + jβ)

¾
A0(t). (5.46)

leads to

jΨA0(t) =

½
g − l +Dg

∙
t2

τ 4a
(1 + jβ)2 − 1

τ 2a
(1 + jβ)

¸
(5.47)

−Mst
2 − jδ |A|2 e−

t2

τ2a

¾
A0(t).
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To find an approximate solution we expand the Gaussian in the bracket,
which is a consequency of the SPM to first order in the exponent.

jΨ = g − l +Dg

∙
t2

τ 4a
(1 + jβ)2 − 1

τ 2a
(1 + jβ)

¸
−Mst

2 − jδ |A|2
µ
1− t2

τ 2a

¶
.

(5.48)
This has to be fulfilled for all times, so we can compare coefficients in front
of the constant terms and the quadratic terms, which leads to two complex
conditions. This leads to four equations for the unknown pulsewidth τa,
chirp β, round-trip phase Ψ and the necessary excess gain g − l. With the
nonlinear peak phase shift due to SPM, φ0 = δ |A|2 . Real and Imaginary
parts of the quadratic terms lead to

0 =
Dg

τ 4a

¡
1− β2

¢−Ms, (5.49)

0 = 2β
Dg

τ 4a
+

φ0
τ 2a
, (5.50)

and the constant terms give the excess gain and the additional round-trip
phase.

g − l =
Dg

τ 2a
, (5.51)

Ψ = Dg

∙
− 1
τ 2a
β

¸
− φ0. (5.52)

The first two equations directly give the chirp and pulse width.

β = −φ0τ
2
a

2Dg
(5.53)

τ 4a =
Dg

Ms +
φ20
4Dg

. (5.54)

However, one has to note, that this simple analysis does not give any hint
on the stability of these approximate solution. Indeed computer simulations
show, that after an additional pulse shorting of about a factor of 2 by SPM
beyond the pulse width already achieved by pure active mode-locking on its
own, the SPM drives the pulses unstable [5]. This is one of the reasons,
why very broadband laser media, like Ti:sapphire, can not simply generate
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Figure 5.8: Acitve mode-locking with additional soliton formation

femtosecond pulses via active modelocking. The SPM occuring in the gain
medium for very short pulses drives the modelocking unstable. Additional
stabilization measures have to be adopted. For example the addition of
negative group delay dispersion might lead to stable soliton formation in the
presence of the active modelocker.

5.5 Active Mode Locking with Soliton For-
mation

Experimental results with fiber lasers [8, 9, 11] and solid state lasers [10]
indicated that soliton shaping in the negative GDD regime leads to pulse
stabilization and considerable pulse shorting. With sufficient negative dis-
persion and self-phase modulation in the system and picosecond or even
femtosecond pulses, it is possible that the pulse shaping due to GDD and
SPM is much stronger than due to modulation and gain filtering, see Fig.
5.8. The resulting master equation for this case is

TR
∂A

∂T
=

∙
g + (Dg − j |D|) ∂2

∂t2
− l −M (1− cos(ωMt))− jδ|A|2

¸
A. (5.55)
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For the case, that soliton formation takes over, the steady state solution a
soliton plus a continuum contribution

A(T, t) =
¡
a(x)ejpt + ac(T, t)

¢
e−jθ (5.56)

with

a(x) = A sech(x), and x =
1

τ
(t+ 2D

Z T

0

p(T 0)dT 0 − t0) (5.57)

where ac is the continuum contribution. The phase is determined by

θ(T ) = θ0(T )− D

TR

Z T

0

µ
1

τ(T 0)2
− p(T 0)2

¶
dT 0, (5.58)

whereby we always assume that the relation between the soliton energy and
soliton width is maintained (3.9)

|D|
τ(T )2

=
δA(T )2

2
. (5.59)

We also allow for a continuous change in the soliton amplitude A or energy
W = 2A2τ and the soliton variables phase θ0, carrier frequency p and timing
t0. φ0 is the soliton phase shift per roundtrip

φ0 =
|D|
τ 2

. (5.60)

However, we assume that the changes in carrier frequency, timing and
phase stay small. Introducing (5.56) into (5.55) we obtain according to the
soliton perturbation theory developed in chapter 3.5

TR

∙
∂ac
∂T

+
∂W

∂T
fw +

∂∆θ

∂T
fθ +

∂∆p

∂T
fp +

∂∆t

∂T
ft

¸
= φ0L (ac +∆pfp) +R(a+∆pfp + ac) (5.61)

−MωM sin(ωMτx)∆ta(x)

The last term arises because the active modelocker breaks the time invariance
of the system and leads to a restoring force pushing the soliton back to its
equilibrium position. L, R are the operators of the linearized NSE and of
the active mode locking scheme, respectively

R = g

µ
1 +

1

Ω2gτ
2

∂2

∂x2

¶
− l −M (1− cos(ωMτx)) , (5.62)

The vectors fw, fθ, fp and ft describe the change in the soliton when the soliton
energy, phase, carrier frequency and timing varies.
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5.5.1 Stability Condition

We want to show, that a stable soliton can exist in the presence of the
modelocker and gain dispersion if the ratio between the negative GDD and
gain dispersion is sufficiently large. From (5.61) we obtain the equations of
motion for the soliton parameters and the continuum by carrying out the
scalar product with the corresponding adjoint functions. Specifically, for the
soliton energy we get

TR
∂W

∂T
= 2

µ
g − l − g

3Ω2gτ
2
− π2

24
Mω2Mτ 2

¶
W (5.63)

+ < f (+)w |Rac > .

We see that gain saturation does not lead to a coupling between the soliton
and the continuum to first order in the perturbation, because they are or-
thogonal to each other in the sense of the scalar product (3.36). This also
means that to first order the total field energy is contained in the soliton.

Thus to zero order the stationary soliton energyW0 = 2A
2
0τ is determined

by the condition that the saturated gain is equal to the total loss due to the
linear loss l, gain filtering and modulator loss

g − l =
π2

24
Mω2Mτ 2 +

g

3Ω2gτ
2

(5.64)

with the saturated gain

g =
g0

1 +W0/EL
. (5.65)

Linearization around this stationary value gives for the soliton perturbations
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TR
∂∆W

∂T
= 2

Ã
− g

(1 +W0/EL)

µ
W0

EL
+

1

3Ω2gτ
2

¶

+
π2

12
Mω2Mτ2

!
∆W+ < f (+)w |Rac > (5.66)

TR
∂∆θ

∂T
= < f

(+)
θ |Rac > (5.67)

TR
∂∆p

∂T
= − 4g

3Ω2gτ
2
∆p+ < f (+)p |Rac > (5.68)

TR
∂∆t

∂T
= −π

2

6
Mω2Mτ 2∆t+ 2|D|∆p

+ < f
(+)
t |Rac > (5.69)

and for the continuum we obtain

TR
∂g(k)

∂T
= jΦ0(k

2 + 1)g(k)+ < f
(+)
k |Rac >

+ < f
(+)
k |R (a0(x) +∆w fw +∆p fp) >

− < f
(+)
k |MωM sin(ωMτx)a0(x) > .∆t (5.70)

Thus the action of the active modelocker and gain dispersion has several
effects. First, the modelocker leads to a restoring force in the timing of the
soliton (5.69). Second, the gain dispersion and the active modelocker lead to
coupling between the perturbed soliton and the continuum which results in
a steady excitation of the continuum.
However, as we will see later, the pulse width of the soliton, which can be

stabilized by the modelocker, is not too far from the Gaussian pulse width
by only active mode locking. Then relation

ωMτ ¿ 1¿ Ωgτ (5.71)

is fulfilled. The weak gain dispersion and the weak active modelocker only
couples the soliton to the continuum, but to first order the continuum does
not couple back to the soliton. Neglecting higher order terms in the matrix
elements of eq.(5.70) [6] results in a decoupling of the soliton perturbations
from the continuum in (5.66) to (5.70). For a laser far above threshold, i.e.
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W0/EL >> 1, gain saturation always stabilizes the amplitude perturbation
and eqs.(5.67) to (5.69) indicate for phase, frequency and timing fluctuations.
This is in contrast to the situation in a soliton storage ring where the laser
amplifier compensating for the loss in the ring is below threshold [14].
By inverse Fourier transformation of (5.70) and weak coupling, we obtain

for the associated function of the continuum

TR
∂G

∂T
=

∙
g − l + jΦ0 +

g

Ω2g
(1− jDn)

∂2

∂t2

−M (1− cos(ωMt))

¸
G+F−1

½
< f

(+)
k |Ra0(x) > (5.72)

− < f
(+)
k |MωM sin(ωMτx)a0(x) > ∆t

¾
where Dn is the dispersion normalized to the gain dispersion

Dn = |D|Ω2g/g. (5.73)

Note, that the homogeneous part of the equation of motion for the continuum,
which governs the decay of the continuum, is the same as the homogeneous
part of the equation for the noise in a soliton storage ring at the position
where no soliton or bit is present [14]. Thus the decay of the continuum is
not affected by the nonlinearity, but there is a continuous excitation of the
continuum by the soliton when the perturbing elements are passed by the
soliton. Thus under the above approximations the question of stability of
the soliton solution is completely governed by the stability of the continuum
(5.72). As we can see from (5.72) the evolution of the continuum obeys
the active mode locking equation with GVD but with a value for the gain
determined by (5.64). In the parabolic approximation of the cosine, we obtain
again the Hermite Gaussians as the eigensolutions for the evolution operator
but the width of these eigensolutions is now given by

τ c = τa
4
p
(1− jDn) (5.74)

and the associated eigenvalues are

λm = jΦ0 + g − l −Mω2Mτ 2a
p
(1− jDn)(m+

1

2
). (5.75)
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The gain is clamped to the steady state value given by condition (5.64) and
we obtain

λm = +jΦ0 +
1

3

p
DgMs

"³τa
τ

´2
+

π2

4

³τa
τ

´−2
(5.76)

−6
p
(1− jDn)(m+

1

2
)

#
.

Stability is achieved when all continuum modes see a net loss per roundtrip,
Re{λm} < 0 for m ≥ 0, i.e. we get from (5.76)

³τa
τ

´2
+

π2

4

µ
τ

τa

¶2
< 3Re{

p
(1− jDn)}. (5.77)

Relation (5.77) establishes a quadratic inequality for the pulse width reduc-
tion ratio ξ = (τa/τ)2, which is a measure for the pulse width reduction due
to soliton formation

ξ2 − 3Re{
p
(1− jDn)}ξ + π2

4
< 0. (5.78)

As has to be expected, this inequality can only be satisfied if we have a
minimum amount of negative normalized dispersion so that a soliton can be
formed at all

Dn,crit = 0.652. (5.79)

Therefore our perturbation ansatz gives only meaningful results beyond this
critical amount of negative dispersion. Since ξ compares the width of a
Gaussian with that of a secant hyperbolic it is more relevant to compare the
full width half maximum of the intensity profiles [?] of the corresponding
pulses which is given by

R =
1.66

1.76

p
ξ. (5.80)
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Figure 5.9: Pulsewidth reduction as a function of normalized dispersion.
Below Dn,crit = 0.652 no stable soliton can be formed.

Figure 5.9 shows the maximum pulse width reduction R allowed by the
stability criterion (5.78) as a function of the normalized dispersion. The crit-
ical value for the pulse width reduction is Rcrit ≈ 1.2. For large normalized
dispersion Fig. 1 shows that the soliton can be kept stable at a pulse width
reduced by up to a factor of 5 when the normalized dispersion can reach a
value of 200. Even at a moderate negative dispersion of Dn = 5, we can
achieve a pulsewidth reduction by a factor of 2. For large normalized disper-
sion the stability criterion (5.78) approaches asymptotically the behavior

ξ <

r
9Dn

2
or R <

1.66

1.76
4

r
9Dn

2
. (5.81)

Thus, the possible pulse-width reduction scales with the fourth root of the
normalized dispersion indicating the need of an excessive amount of disper-
sion necessary to maintain a stable soliton while suppressing the continuum.
The physical reason for this is that gain filtering and the active modelocker
continuously shed energy from the soliton into the continuum. For the soli-
ton the action of GVD and SPM is always in balance and maintains the
pulse shape. However, as can be seen from (5.72), the continuum, which can
be viewed as a weak background pulse, does not experience SPM once it is
generated and therefore gets spread by GVD. This is also the reason why
the eigenstates of the continuum consist of long chirped pulses that scale
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also with the fourth root of the dispersion (5.74). Then, the long continuum
pulses suffer a much higher loss in the active modulator in contrast to the
short soliton which suffers reduced gain when passing the gain medium due
to its broader spectrum. The soliton is stable as long as the continuum sees
less roundtrip gain than the soliton.
In principle by introducing a large amount of negative dispersion the

theory would predict arbitrarily short pulses. However, the master equation
(5.55) only describes the laser system properly when the nonlinear changes of
the pulse per pass are small. This gives an upper limit to the nonlinear phase
shift Φ0 that the soliton can undergo during one roundtrip. A conservative
estimation of this upper limit is given with Φ0 = 0.1. Then the action of
the individual operators in (5.55) can still be considered as continuous. Even
if one considers larger values for the maximum phase shift allowed, since in
fiber lasers the action of GVD and SPM occurs simultaneously and therefore
eq.(5.55) may describe the laser properly even for large nonlinear phase shifts
per roundtrip, one will run into intrinsic soliton and sideband instabilities for
Φ0 approaching 2π [30, 31]. Under the condition of a limited phase shift per
roundtrip we obtain

τ 2 =
|D|
Φ0

. (5.82)

Thus from (5.32), the definition of ξ, (5.81) and (5.82) we obtain for the
maximum possible reduction in pulsewidth

Rmax =
1.66

1.76
12

s
(9Φ0/2)2

DgMs
(5.83)

and therefore for the minimum pulsewidth

τmin =
6

s
2D2

g

9Φ0Ms
. (5.84)

The necessary amount of normalized negative GVD is then given by

Dn =
2

9
3

s
(9Φ0/2)2

Dg Ms
. (5.85)

Eqs.(5.83) to (5.85) constitute the main results of this paper, because they
allow us to compute the possible pulse width reduction and the necessary
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Table 5.1: Maximum pulsewidth reduction and necessary normalized GVD
for different laser systems. In all cases we used for the saturated gain g = 0.1
and the soliton phase shift per roundtrip Φ0 = 0.1. For the broadband gain
materials the last column indicates rather long transient times which calls
for regenerative mode locking.
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negative GVD for a given laser system. Table (5.1) shows the evaluation of
these formulas for several gain media and typical laser parameters.
Table 5.1 shows that soliton formation in actively mode-locked lasers may

lead to considerable pulse shortening, up to a factor of 10 in Ti:sapphire. Due
to the 12th root in (5.83) the shortening depends mostly on the bandwidth
of the gain material which can change by several orders of magnitude for the
different laser materials. The amount of negative dispersion for achieving this
additional pulse shortening is in a range which can be achieved by gratings,
Gires-Tournois interferometers, or prisms.
Of course, in the experiment one has to stay away from these limits

to suppress the continuum sufficiently. However, as numerical simulations
show, the transition from stable to instable behaviour is remarkably sharp.
The reason for this can be understood from the structure of the eigenvalues
for the continuum (5.76). The time scale for the decay of transients is given
by the inverse of the real part of the fundamental continuum mode which
diverges at the transition to instability. Nevertheless, a good estimate for
this transient time is given by the leading term of the real part of (5.76)

τ trans
TR

=
1

Re{λ0} ≈
3p

DgMsR2
(5.86)

This transient time is also shown in Table (5.1) for different laser systems.
Thus these transients decay, if not too close to the instability border, on time
scales from approximately 1,000 up to some 100,000 roundtrips, depending
strongly on the gain bandwidth and modulation strength. Consequently, to
first order the eigenvalues of the continuum modes, which are excited by the
right hand side of (5.72), are purely imaginary and independent of the mode
number, i.e. λn ≈ jΦ0. Therefore, as long as the continuum is stable, the
solution to (5.72) is given by

G(x) =
−j
Φ0
F−1

½
< f

(+)
k |Ra0(x) >

− Msτ
2 < f

(+)
k |xa0(x) > ∆t

τ

¾
. (5.87)

Thus, in steady state the continuum is on the order of

|G(x)| ≈ A0
Φ0

Dg

τ 2
=

A0
Dn

. (5.88)
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which demonstrates again the spreading of the continuum by the dispersion.
Equation (5.88) shows that the nonlinear phase shift of the solitary pulse
per round trip has to be chosen as large as possible. This also maximizes
the normalized dispersion, so that the radiation shed from the soliton into
the continuum changes the phase rapidly enough such that the continuum
in steady state stays small. Note that the size of the generated continuum
according to (5.88) is rather independent of the real part of the lowest eigen-
value of the continuum mode. Therefore, the border to instability is very
sharply defined. However, the time scale of the transients at the transition
to instability can become arbitrarily long. Therefore, numerical simulations
are only trustworthy if the time scales for transients in the system are known
from theoretical considerations as those derived above in (5.86). The simu-
lation time for a given laser should be at least of the order of 10 times τ trans
or even longer, if operated close to the instability point, as we will see in the
next section.

5.5.2 Numerical simulations

Table 5.1 shows that soliton formation in actively mode-locked lasers may
lead to considerable pulse shortening, up to a factor of 10 in Ti:sapphire. We
want to illustrate that at the example of a Nd:YAG laser, which is chosen
due to its moderate gain bandwidth, and therefore, its large gain dispersion.
This will limit the pulsewidth reduction possible to about 3, but the decay
time of the continuum (5.86) (see also Table 5.1) is then in a range of 700
roundtrips so that the steady state of the mode-locked laser can be reached
with moderate computer time, while the approximations involved are still
satisfied. The system parameters used for the simulation are shown in table
5.2. For the simulation of eq.(5.55) we use the standard split-step Fourier
transform method. Here the discrete action of SPM and GDD per roundtrip
is included by choosing the integration step size for the T integration to be
the roundtrip time TR. We used a discretisation of 1024 points over the
bandwidth of 1THz, which corresponds to a resolution in the time domain
of 1ps. The following figures, show only one tenth of the simulated window
in time and frequency.
Figure 5.10 shows the result of the simulation starting with a 68-ps-long

Gaussian pulse with a pulse energy of W = 40 nJ for Dn = 24, i.e. D = -17
ps2. For the given SPM coefficient this should lead to stable pulse shortening
by a factor of R = 2.8. Thus after at least a few thousand roundtrips the
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parameter value
l 0.1
g0 1
PL 1W
Ωg 2π · 60GHz
ωM 2π · 0.25GHz
TR 4ns
M 0.2
δ 1.4 · 10−4W−1

D −17ps2 / − 10ps2

Table 5.2: Parameters used for numerical simulations

Figure 5.10: Time evolution of the pulse intensity in a Nd:YAG laser for the
parameters in Table 5.2, D = −17ps2, for the first 1,000 roundtrips in the
laser cavity, starting with a 68ps long Gaussian pulse.
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laser should be in steady state again with a FWHM pulsewidth of 24 ps.
Fig. 5.10 shows the pulse evolution over the first thousand round-trips, i.e.
4µs real time. The long Gaussian pulse at the start contains an appreciable
amount of continuum. The continuum part of the solution does not experi-
ence the nonlinear phase shift due to SPM in contrast to the soliton. Thus
the soliton interferes with the continuum periodically with the soliton period
of Tsoliton/TR = 2π/φ0 = 20π. This is the reason for the oscillations of the
pulse amplitude seen in Fig. 5.10 which vanish with the decay of the con-
tinuum. Note also that the solitary pulse is rapidly formed, due to the large
nonlinear phase shift per roundtrip. Figure 5.11 shows the simulation in time
and frequency domain over 10,000 roundtrips. The laser reaches steady state
after about 4,000 roundtrips which corresponds to 6 × τ trans and the final
pulsewidth is 24 ps in exact agreement with the predictions of the analytic
formulas derived above.
Lower normalized dispersion of Dn = 15 or D = -10 ps2 only allows for

a reduction in pulsewidth by R = 2.68. However, using the same amount of
SPM as before we leave the range of stable soliton generation.
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Figure 5.11: Time evolution of the intensity (a) and spectrum (b) for the
same parameters as Fig. 2 over 10,000 roundtrips. The laser reaches steady
state after about 4,000 rountrips.
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Figure 5.12: (a) Time evolution of the intensity in a Nd:YAG laser for the
parameters in Table 5.2 over the first 1,000 round-trips. The amount of
negative dispersion is reduced to D = −10ps2, starting again from a 68ps
long pulse. The continuum in this case does not decay as in Fig. 5.2 and 5.3
due to the insufficient dispersion. (b) Same simulation over 50,000 round-
trips.
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Figure 5.12(a) shows similar to Fig. 5.10 the first 1, 000 roundtrips in
that case. Again the solitary pulse is rapidly formed out of the long Gaussian
initial pulse. But in contrast to the situation in Fig. 5.10, the continuum does
not any longer decay on this time scale. The dispersion is too low to spread
the continuum rapidly enough. The continuum then accumulates over many
roundtrips as can be seen from Fig. 5.12(b). After about 10,000 roundtrips
the continuum has grown so much that it extracts an appreciable amount of
energy from the soliton. But surprisingly the continuum modes stop growing
after about 30,000 roundtrips and a new quasi stationary state is reached.

5.5.3 Experimental Verification

The theory above explains very well the ps Ti:saphire experiments [10] in
the regime where the pulses are stabilized by the active modelocker alone.
Gires-Tournois interferometers were used to obtain large amounts of negative
GDD to operate the laser in the stable soliton regime derived above. Here
we want to discuss in more detail the experimental results obtained recently
with a regeneratively, actively mode-locked Nd:glass laser [7], resulting in 310
fs. If SPM and GVD could be neglected, the weak modelocker would produce
Gaussian pulses with a FWHM of τa,FWHM = 10 ps. However, the strong
SPM prevents stable pulse formation. The negative dispersion available in
the experiment is too low to achieve stable soliton formation, because the
pulse width of the soliton at this power level is given by τ = 4|D|/(δW ) =
464 fs, for the example discussed. The normalized dispersion is not large
enough to allow for such a large pulse width reduction. Providing enough
negative dispersion results in a 310 fs perfectly sech-shaped soliton-like pulse
as shown in Fig. 5.13. A numerical simulation of this case would need millions
of roundtrips through the cavity until a stationary state is reached. That
means milliseconds of real time, but would necessitate days of computer
time. Also the transition to instable behaviour has been observed, which is
the characteristic occurence of a short solitary fs-pulse together with a long
ps-pulse due to the instable continuum as we have found in the numerical
simulation for the case of a Nd:YAG laser (see Fig. 5.12(b)). Figure 5.14
shows the signal of a fast detector diode on the sampling oscilloscope. The
detector has an overall bandwidth of 25GHz and therefore can not resolve
the fs-pulse, but can resolve the width of the following roughly 100ps long
pulse.
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Figure 5.13: Autocorrelation of the actively mode-locked pulse (solid line)
and corresponding sech2 fit (dashed line) with additional soliton formation.

Figure 5.14: Sampling signal of fast detector when the mode-locked laser
operates at the transition to instability. The short fs pulse can not be resolved
by the detector and therefore results in a sharp spike corresponding to the
detector response time. In advance of the fs-pulse travels a roughly 100ps
long pulse.
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5.6 Summary

The main result of this section is, that pure active mode-locking with an
amplitude modulator leads to Gaussian pulses. The width is inverse propor-
tional to the square root of the gain bandwdith. A phase modulator leads
to chirped Gaussian pulses. A soliton much shorter than the Gaussian pulse
due to pure active mode locking can be stabilized by an active modelocker.
This finding also has an important consequence for passive mode locking. It
implies that a slow saturable absorber, i.e. an absorber with a recovery time
much longer than the width of the soliton, is enough to stabilize the pulse,
i.e. to modelock the laser.
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5.7 Active Modelocking with Detuning

So far, we only considered the case of perfect synchronism between the round-
trip of the pulse in the cavity and the external modulator. Technically,
such perfect synchronism is not easy to achieve. One way would be to do
regenerative mode locking, i.e. a part of the output signal of the modelocked
laser is detected, the beatnote at the round-trip frequency is filtered out from
the detector, and sent to an amplifier, which drives the modulator. This
procedure enforces synchronism if the cavity length undergoes fluctuations
due to acoustic vibrations and thermal expansion.
Nevertheless, it is interesting to know how sensitive the system is against

detuning between the modulator and the resonator. It turns out that this
is a physically and mathematically rich situation, which applies to many
other phenomena occuring in externally driven systems, such as the transi-
tion from laminar to turbulent flow in hydrodynamics. This transition has
puzzled physicists for more than a hundred years [1]. During the last 5 to
10 years, a scenario for the transition to turbulence has been put forward
by Trefethen and others [2]. This model gives not only a quantitative de-
scription of the kind of instability that leads to a transition from laminar,
i.e. highly ordered dynamics, to turbulent flow, i.e. chaotic motion, but also
an intuitive physical picture why turbulence is occuring. Such a picture is
the basis for many laser instabilities especially in synchronized laser systems.
According to this theory, turbulence is due to strong transient growth of
deviations from a stable stationary point of the system together with a non-
linear feedback mechanism. The nonlinear feedback mechanism couples part
of the amplified perturbation back into the initial perturbation. Therefore,
the perturbation experiences strong growth repeatedly. Once the transient
growth is large enough, a slight perturbation from the stable stationary point
renders the system into turbulence. Small perturbations are always present
in real systems in the form of system intrinsic noise or environmental noise
and, in computer simulations, due to the finite precision. The predictions
of the linearized stability analysis become meaningless in such cases. The
detuned actively modelocked laser is an excellent example of such a system,
which in addition can be studied analytically. The detuned case has been
only studied experimentally [3][4] or numerically [5] so far. Here, we con-
sider an analytical approach. Note, that this type of instability can not be
detected by a linear stability analysis which is widely used in laser theories
and which we use in this course very often to prove stable pulse formation.



208 BIBLIOGRAPHY

One has to be aware that such situations may arise, where the results of a
linearized stability analysis have only very limited validity.
The equation of motion for the pulse envelope in an actively modelocked

laser with detuning can be writen as

TM
∂A(T, t)

∂T
=

∙
g(T )− l +Df

∂2

∂t2
(5.89)

−M (1− cos(ωMt)) + Td
∂

∂t

¸
A(T, t).

Here, A(T, t) is the pulse envelope as before. There is the time T which is
coarse grained on the time scale of the resonator round-trip time TR and
the time t, which resolves the resulting pulse shape. The saturated gain is
denoted by g(T ) and left dynamical, because we no longer assume that the
gain and field dynamics reaches a steady state eventually. The curvature of
the intracavity losses in the frequency domain, which limit the bandwidth of
the laser, is given by Df .and left fixed for simplicity. M is the depth of the
loss modulation introduced by the modulator with angular frequency ωM =
2π/TM , where TM is the modulator period. Note that Eq.(5.89) describes the
change in the pulse between one period of modulation. The detuning between
resonator round-trip time and the modulator period is Td = TM − TR.This
detuning means that the pulse hits the modulator with some temporal off-set
after one round-trip, which can be described by adding the term Td

∂
∂t
A in the

master equation.The saturated gain g obeys a separate ordinary differential
equation

∂g(T )

∂T
= −g(T )− g0

τL
− g

W (T )

PL
. (5.90)

As before, g0 is the small signal gain due to the pumping, PL the saturation
power of the gain medium, τL the gain relaxation time and W (T ) =

R
|A(T, t)|2 dt the total field energy stored in the cavity at time T .
As before, we expect pulses with a pulse width much shorter than the

round-trip time in the cavity and we assume that they still will be placed
in time near the position where the modulator introduces low loss (Figure
5.15), so that we can still approximate the cosine by a parabola

TM
∂A

∂T
=

∙
g − l +Df

∂2

∂t2
−Mst

2 + Td
∂

∂t

¸
A. (5.91)
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Figure 5.15: Drifting pulse dynamics in a detuned actively modelocked laser
for the situation, where the modulator period is larger than the cavity round-
trip time. The displacement A is caused by the mismatch between the cavity
round-trip time and the modulator period. The displacement B is due to
unequal losses experienced by the front and the back of the pulse in the
modulator. The gain saturates to a level where a possible stationary pulse
experiences no net gain or loss, which opens up a net gain window following
the pulse. Perturbations within that window get amplified while drifting
towards the stationary pulse.

Here, Ms =Mω2M/2 is the curvature of the loss modulation at the point
of minimum loss as before. The time t is now allowed to range from −∞ to
+∞, since the modulator losses make sure that only during the physically
allowed range −TR/2¿ t¿ TR/2 radiation can build up.
In the case of vanishing detuning, i.e. Td = 0, the differential operator

on the right side of (5.91), which generates the dynamics and is usually
called a evolution operator L̂, correspondes to the Schrödinger operator of
the harmonic oscillator. Therefore, it is useful to introduce the creation and
annihilation operators

â =
1√
2

µ
τa∂

∂t
+

t

τa

¶
, â† =

1√
2

µ
−τa∂

∂t
+

t

τa

¶
, (5.92)
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with τa =
4
p
Df/Ms. The evolution operator L̂ is then given by

L̂ = g − l − 2pDfMs

µ
â†â+

1

2

¶
(5.93)

and the evolution equation (5.91) can be written as

TM
∂A

∂T
= L̂A. (5.94)

Consequently, the eigensolutions of this evolution operator are the Hermite-
Gaussians, which we used already before

An(T, t) = un(t)e
λnT/TM (5.95)

un(t) =

s
Wn

2n
√
πn!τa

Hn(t/τa)e
− t2

2τ2a (5.96)

and τa is the pulsewidth of the Gaussian.(see Figure 5.16a)

Figure 5.16: Lower order eigenmodes of the linearized system for zero detun-
ing, ∆ = 0, (a) and for a detuning, ∆ = 0.32, in (b).

The eigenmodes are orthogonal to each other because the evolution op-
erator is hermitian in this case.
The round-trip gain of the eigenmode un(t) is given by its eigenvalue (or

in general by the real part of the eigenvalue) which is given by λn = gn −
l− 2pDfMs(n+0.5) where gn = g0

³
1 + Wn

PLTR

´−1
, with Wn =

R |un(t)|2 dt.

Figure by MIT OCW.
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The eigenvalues prove that, for a given pulse energy, the mode with n = 0,
which we call the ground mode, experiences the largest gain. Consequently,
the ground mode will saturate the gain to a value such that λ0 = 0 in steady
state and all other modes experience net loss, λn < 0 for n > 0, as discussed
before. This is a stable situation as can be shown rigorously by a linearized
stability analysis [6]. Thus active modelocking with perfect synchronization
produces Gaussian pulses with a 1/e—half width of the intensity profile given
by τa.
In the case of non zero detuning Td, the situation becomes more complex.

The evolution operator, (5.93), changes to

L̂D = g − l − 2pDfMs

∙¡
â† −∆

¢
(â+∆) + (

1

2
+∆2)

¸
(5.97)

with the normalized detuning

∆ =
1

2
p
2DfMs

Td
τa

. (5.98)

Introducing the shifted creation and annihilation operators, b̂† = â†+∆ and
b̂ = â+∆, respectively, we obtain

L̂D = ∆g − 2pDfMs

³
b̂†b̂− 2∆b̂

´
(5.99)

with the excess gain

∆g = g − l − 2pDfMs(
1

2
+∆2) (5.100)

due to the detuning. Note, that the resulting evolution operator is not any
longer hermitian and even not normal, i.e.

£
A,A†

¤ 6= 0, which causes the
eigenmodes to become nonnormal [8]. Nevertheless, it is an easy excercise to
compute the eigenvectors and eigenvalues of the new evolution operator in
terms of the eigenstates of b̂†b̂, |li , which are the Hermite Gaussians centered
around ∆. The eigenvectors |ϕni to L̂D are found by the ansatz

|ϕni =
nX
l=0

cnl |li , with cnl+1 =
n− l

2∆
√
l + 1

cnl . (5.101)

The new eigenvalues are λn = gn − l − 2pDfMs(∆
2 + n+ 0.5). By inspec-

tion, it is again easy to see, that the new eigenstates form a complete basis in
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L2(IR). However, the eigenvectors are no longer orthogonal to each other. The
eigensolutions as a function of time are given as a product of a Hermite Poly-
nomial and a shifted Gaussian un(t) = ht |ϕni ∼ Hn(t/τa) exp

h
− (t−

√
2∆τa)2

2τ2a

i
.

Again, a linearized stability analysis shows that the ground mode, i.e.|ϕ0i ,
a Gaussian, is a stable stationary solution. Surprisingly, the linearized anal-
ysis predicts stability of the ground mode for all values of the detuning in
the parabolic modulation and gain approximation. This result is even inde-
pendent from the dynamics of the gain, i.e. the upper state lifetime of the
active medium, as long as there is enough gain to support the pulse. Only
the position of the maximum of the ground mode,

√
2∆ · τa, depends on the

normalized detuning.
Figure 5.15 summarizes the results obtained so far. In the case of de-

tuning, the center of the stationary Gaussian pulse is shifted away from the
position of minimum loss of the modulator. Since the net gain and loss within
one round-trip in the laser cavity has to be zero for a stationary pulse, there
is a long net gain window following the pulse in the case of detuning due
to the necessary excess gain. Figure 2 shows a few of the resulting lowest
order eigenfunctions for the case of a normalized detuning ∆ = 0 in (a) and
∆ = 0.32 in (b). These eigenfunctions are not orthogonal as a result of the
nonnormal evolution operator

5.7.1 Dynamics of the Detuned Actively Mode-locked
Laser

To get insight into the dynamics of the system, we look at computer simu-
lations for a Nd:YLF Laser with the parameters shown in Table 5.3 Figures

EL = 366 µJ g0 = 0.79
τL = 450 µs Ms = 2.467 · 1017s−2
Ωg = 1.12 THz Dg = 2 · 10−26 s2
TR = 4 ns τa = 17 ps
l = 0.025 λ0 = 1.047 µm
M = 0.2

Table 5.3: Data used in the simulations of a Nd:YLF laser.

5.17 show the temporal evolution of the coefficient cn,when the master equa-
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tion is decomposed into Hermite Gaussians centered at t=0 according to
Eq.(5.96).

A(T, t) =
∞X
n=0

cn(T ) un(t)
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Figure 5.17: Coefficients of the envelope in a Hermite-Gaussian-Basis, as
a function of resonator round-trips. The normalized detuning is ∆ = 3.5.
The simulation starts from the steady state without detuning. The curve
starting at 1 is the ground mode. To describe a shifted pulse, many modes
are necessary.

Figure 5.18 and 5.19 shows the deviation from the steady state gain and
the pulse envelope in the time domain for a normalized detuning of ∆ = 3.5.
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Figure 5.18: Gain as a function of the number of roundtrips. It changes to a
higher level.
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Figure 5.19: Temporal evolution of the pusle envelope. The pulse shifts
slowly into the new equilibrium position at

√
2 ∆ = 4.9 in agreement with

the simulation.

Figures 5.20 to 5.22 show the same quantities for a slightly higher nor-
malized detuning of ∆ = 4.
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Figure 5.20: Temporal evolution of the coefficients in a Hermite-Gaussian
Basis at a normalized detuning of ∆ = 4. Almost peridoically short in-
terrupting events of the otherwise regular motion can be easily recognized
(Intermittent Behavior). Over an extended period time between such events
the laser approaches almost a steady state.
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Figure 5.22: Time evolution of pulse envelope.
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Figure 5.21: Temporal evolution of deviation from quasi steady state gain.

The pictures clearly show that the system does not approach a steady
state anymore, but rather stays turbulent, i.e. the dynamics is chaotic.

5.7.2 Nonnormal Systems and Transient Gain

To get insight into the dynamics of a nonnormal time evolution, we consider
the following two-dimensional nonnormal system

du

dt
= Au, u(0) = u0, u(t) = eAtu0 (5.102)
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Figure 5.23: Decomposition of an initial perturbation in the eigen basis.

with

A =

µ −1
2

a
2

0 −1
¶
⇒ A† =

µ −1
2

0
a
2
−1

¶
,
£
A,A†

¤
=

a

4

µ
a 1
1 a

¶
6= 0.
(5.103)

The parameter a scales the strength of the nonnormality, similar to the
detuning ∆ in the case of a modelocked laser or the Reynolds number in
hydrodynamics, where the linearized Navier-Stokes Equations constitute a
nonnormal system.
The eigenvalues and vectors of the linear system are

λ1 = −1
2
, v1 =

µ
1
0

¶
, λ2 = −1, v2 =

1√
1 + a2

µ
a
−1

¶
(5.104)

The eigenvectors build a complete system and every initial vector can be
decomposed in this basis. However, for large a, the two eigenvectors become
more and more parallel, so that a decomposition of a small initial vector
almost orthogonal to the basis vectors needs large components (Figure 5.23)
The solution is

u(t) = eAtu0 = c1e
−t/2 −→v 1 + c2 e

−t −→v 2.
Since the eigenvalues are negative, both contributions decay, and the

system is stable. However, one eigen component decays twice as fast than
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the other one. Of importance to us is the transient gain that the system is
showing due to the fact of near parallel eigen vectors. Both coefficients c1
and c2 are large. When one of the components decays, the other one is still
there and the resulting vector

u(t→ 2) ≈ c1e
−1 −→v 1.

can be much larger then the initial perturbation during this transient phase.
This is transient gain. It can become arbitrarily large for large a.

5.7.3 The Nonormal Behavior of the Detuned Laser

The nonnormality of the operator,
h
L̂D, L̂

†
D

i
∼ ∆, increases with detuning.

Figure 5.24 shows the normalized scalar products between the eigenmodes
for different values of the detuning

C(m,n) =

¯̄̄̄
¯ hϕm |ϕniphϕm |ϕmi hϕn |ϕni

¯̄̄̄
¯ . (5.105)

The eigenmodes are orthogonal for zero detuning. The orthogonality vanishes
with increased detuning. The recursion relation (5.101) tells us that the
overlap of the new eigenmodes with the ground mode increases for increasing
detuning. This corresponds to the parallelization of the eigenmodes of the
linearzed problem which leads to large transient gain,

°°°eL̂Dt°°°, in a nonnormal
situation [2]. Figure 5.24d shows the transient gain for an initial perturbation
from the stationary ground mode calculated by numerical simulations of the
linearized system using an expansion of the linearized system in terms of Fock
states to the operator b̂. A normalized detuning of ∆ = 3 already leads to
transient gains for perturbations of the order of 106 within 20, 000 round-trips
which lead to an enormous sensitivity of the system against perturbations.
An analytical solution of the linearized system neglecting the gain saturation
shows that the transient gain scales with the detuning according to exp(2∆2).
This strong super exponential growth with increasing detuning determines
the dynamics completely.
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Figure 5.24: Scalar products of eigenvectors as a function of the eigenvector
index for the cases ∆ = 0 shown in (a), ∆ = 1 in (b) and ∆ = 3 in (c). (d)
shows the transient gain as a funtion of time for these detunings computed
and for ∆ = 2, from the linearized system dynamics.

Figure 5.25: Critical detuning obtained from numerical simulations as a func-
tion of the normalized pumping rate and cavity decay time divided by the
upper-state lifetime. The crititcal detuning is almost independent of all laser
parameters shown. The mean critical detuning is ∆ ≈ 3.65.

Kaertner, F. X., et al. "Turbulence in Mode-locked Lasers".  Physical Review Letters 82, no. 22 
(May 1999): 4428-4431. 

Kaertner, F. X., et al. "Turbulence in Mode-locked Lasers".  Physical Review Letters 82, no. 22 
(May 1999): 4428-4431. 
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Figure 5.25 shows the surface of the transition to turbulence in the pa-
rameter space of a Nd:YLF laser, i.e. critical detuning ∆, the pumping rate
r = g0/l and the ratio between the cavity decay time Tcav = TR/l and the
upper state lifetime τL. In this model, we did not inlcude the spontaneous
emission.
The transition to turbulence always occurs at a normalized detuning of

about∆ ≈ 3.7 which gives a transient gain exp(2∆2) = 1012. This means that
already uncertainties of the numerical integration algorithm are amplified to
a perturbation as large as the stationary state itself.To prove that the system
dynamics becomes really chaotic, one has to compute the Liapunov coefficient
[9]. The Liapunov coefficient describes how fast the phase space trajectores
separate from each other, if they start in close proximity. It is formally
defined in the following way. Two trajectories y(t) and z(t) start in close
vicinity at t = t0

ky(t0)− z(t0)k = ε = 10−4. (5.106)

Then, the system is run for a certain time ∆t and the logarithmic growth
rate, i.e. Liapunov coefficient, of the distance between both trajectories is
evaluated using

λ0 = ln

µky(t0 +∆t)− z(t0 +∆t)k
ε

¶
(5.107)

For the next iteration the trajectory z(t) is rescaled along the distance be-
tween y(t0 +∆t) and z(t0 +∆t) according to

z(t1) = y(t0 +∆t) + ε
y(t0 +∆t)− z(t0 +∆t)

ky(t0 +∆t)− z(t0 +∆t)k . (5.108)

The new points of the trajectories z(t1+∆t) and y(t1+∆t) = y(t0+2∆t) are
calculated and a new estimate for the Liapunov coefficient λ1 is calculated
using Eq.(5.107) with new indices. This procedure is continued and the
Liapunov coefficient is defined as the average of all the approximations over
a long enough iteration, so that its changes are below a certain error bound
from iteration to iteration.

λ =
1

N

NX
n=0

λn (5.109)

Figure 5.26 shows the Liapunov coefficient of the Nd:YLF laser discussed
above, as a function of the normlized detuning. When the Liapunov coef-
ficient becomes positive, i.e. the system becomes exponentially sensitive to
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small changes in the initial conditions, the system is called chaotic. The
graph clearly indicates that the dynamics is chaotic above a critical detuning
of about ∆c ≈ 3.7.

Figure 5.26: Liapunov coefficient over normalized detuning.

In the turbulent regime, the system does not reach a steady state, because
it is nonperiodically interrupted by a new pulse created out of the net gain
window, see Figure 5.15, following the pulse for positive detuning. This pulse
saturates the gain and the nearly formed steady state pulse is destroyed and
finally replaced by a new one. The gain saturation provides the nonlinear
feedback mechanism, which strongly perturbs the system again, once a strong
perturbation grows up due to the transient linear amplification mechanism.
The critical detuning becomes smaller if additional noise sources, such as

the spontaneous emission noise of the laser amplifier and technical noise
sources are taken into account. However, due to the super exponential
growth, the critical detuning will not depend strongly on the strength of
the noise sources. If the spontaneous emission noise is included in the sim-
ulation, we obtain the same shape for the critical detuning as in Fig. 5.25,
however the critical detuning is lowered to about ∆c ≈ 2. Note that this crit-
ical detuning is very insensitive to any other changes in the parameters of the
system. Therefore, one can expect that actively mode-locked lasers without
regenerative feedback run unstable at a real detuning, see (5.98) given by

Td = 4
p
2DfMsτa (5.110)

Kaertner, F. X., et al. "Turbulence in Mode-locked Lasers".  Physical Review Letters 82, no. 22 
(May 1999): 4428-4431. 
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For the above Nd:YLF laser, using the values in Table 5.3 results in a relative
precision of the modulation frequency of

Td
TR

= 1.7 · 10−6.

The derived value for the frequency stability can easily be achieved and
maintained with modern microwave synthesizers. However, this requires that
the cavity length of Nd:YLF laser is also stable to this limit. Note that the
thermal expansion coefficient for steel is 1.6 · 10−5/K.
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