
10. A Weekend to Remember 
 

Weekends don't count unless you spend them doing something completely pointless. – Bill 
Watterson. 

 
You have gotten into trouble with some of your, shall we say, difficult friends because 
they have realized that they are not being invited to your house parties. So you announce 
that you are going to have dinners on two consecutive nights, Friday and Saturday, and 
every one of your friends is going to get invited on exactly one of those two days. You 
are still worried about pairs of your friends who intensely dislike each other and want to 
invite them on different days. 
 
To summarize: 
 

1. Each of your friends must attend exactly one of the two dinners. 
 

2. If A dislikes B or B dislikes A, they cannot both be in the same dinner party. 

Now, you are a bit worried because you don’t know if you can pull this off.  If you 
had a small social circle like the one below, it would be easy. Recall that in the 
graph below, the vertices are friends and an edge between a pair of vertices mean 
that the two corresponding friends dislike each other, and cannot be invited to the 
party on the same night. 

 

For Dinner 1 you could invite Bob, Don, and Cleo.  And for Dinner 2 you could invite 
Alice and Eve. There are other possibilities as well. Unfortunately, that social circle was 
from many moons ago and you have moved on. Your social circle now looks like this:  

 

Programming constructs and algorithmic paradigms covered in this puzzle:  Graph 
representation using dictionaries. Recursive depth-first graph traversal. 
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Can you invite all of your friends A through I above following your self-imposed rules? 
Or are you going to have go to back on your word, and not invite someone? 
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You’re hosed. If you look at the graph carefully, you will see that you have three friends 
F, G and H, each of whom can’t be invited with other two.  You will need three separate 
days to host each of them L 

Okay, let’s assume that you convince G and H to not cause a ruckus if they see each 
other.  So your social graph now looks like this. 

 

What about now?  
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Finding a Partition 
 
With some work, you probably figured out that you could invite B, D, G, H and I to 
Dinner 1, and A, C, E and F to Dinner 2. Phew! 
 
Your social circle is volatile and you might have to do this analysis week after week. You 
would like to quickly know if you can make an announcement any given week, such as 
“party on both nights, everyone gets to come to exactly one,” with the confidence that it 
will be a boisterous but friendly weekend. Which means you want to write a program that 
can check if there is some way that you can “partition,” i.e., split your friends across two 
nights, so if you look at the social circle graph, all the dislikes edges would be across the 
partition, and none within either side.  
 
The partition we found looks like this pictorially.   
 

 
 
This is simply redrawing your social circle graph! It turns out the graph above has a name 
– it is a bipartite graph. A bipartite graph is a graph whose vertices can be divided into 
two independent sets, U and V such that every edge (u, v) either connects a vertex from 
U to V or a vertex from V to U. We can also say that there is no edge that connects 
vertices of same set.  In the above example U = {A, C, E, F} and V = {B, D, G, H, I}. 
 
A graph is bipartite if the graph can be colored using two colors such that no two vertices 
that are adjacent, i.e., share an edge, have the same color. This is, of course, a restatement 
of our original problem, with colors substituted for dinner nights. We will refer 
sometimes refer to the coloring constraint as the adjacency constraint. 
 
You might think that a bipartite graph can’t have cycles. It is possible to color a graph 
with cycles comprising an even number of vertices using two colors, Shaded and 
Hatched. For example, see the following graph below.  
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= {A, C, E} and V = {B, D, F}, and we can invite members of U on one day, and 
mbers in V on the second. However, it is not possible to color a graph with two co

has a cycle involving an odd number of vertices. Consider F, G and H in our secon
ample with 9 vertices where G and H have an edge between them. F, G and H are i
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3-cycle and hence that graph is not bipartite. The 5-cycle in the graph below renders it 
non-bipartite.  
 

  
 
Changing the color of A to Hatched is not going to help. B and F need to be Shaded, and 
then C and D need to be Hatched, which violates an adjacency constraint. 
 

Checking if a Graph is Bipartite 
 
We need an algorithm that given a graph successfully colors the vertices with two colors
obeying the adjacency constraints if the graph is bipartite or tells us that the graph is not 
bipartite.  One color will correspond to the set U, and the other to the set V. Here’s a 
possible algorithm that uses a technique called depth-first search. 
 
1. color = Shaded, vertex = starting vertex w. 
2. If w has not yet been colored, color vertex w with color. 
3. If w has already been colored with a different color from color, the graph is not 

bipartite, return False. 
4. If w has already been colored with the correct color, return True and the 

(unmodified) coloring. 
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5. Flip color: Shaded to Hatched, or Hatched to Shaded. 
6. For each neighbor v of w, recursively call the procedure with v and color, i.e., go to 

Step 2 with w = v. If any of the recursive calls return False, return False. 
7. The graph is bipartite, return True and the coloring. 

 
Let’s run this algorithm on an example graph shown below beginning with coloring 
vertex B Shaded.  C is the only vertex connected to B and is colored next. From C we go 
to D since B is already colored. Once we color D, since C is already colored, we have the 
choice of coloring E or F, and we color E first.   
 

  
 
Since E has no neighbors other than D, we next move to F, which is a neighbor of D. We 
color the neighbors of F in the order G, H and I. 
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An observant reader may have noticed that our example above omitted vertex/friend A 
from the social circle example we presented earlier. This is because A is not “connected” 
to any of the other vertices – it does not have any neighbors. Of course, A could be 
colored either Shaded or Hatched. 
 
We’ll assume that the input graph is such that we can reach all vertices from a specified 
start vertex.  One exercise at the end of the puzzle chapter will deal with the general case 
of possibly disconnected components in the input graph.  
 

Graph Representation 
 
Before we dive into coding the algorithm, we have to choose a data structure for our 
graph.  The data structure should allow us to perform the operations we need for the 
algorithm, in particular, being able to take a vertex, find its neighbors, and then the 
neighbors’ neighbors, etc. Here’s a graph representation based on Python dictionaries that 
will serve our needs.  It represents the graph that we just executed the algorithm on. 
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graph	=	{'B':	['C'],	
									'C':	['B',	'D'],	
									'D':	['C',	'E',	'F'],	
									'E':	['D'],	
									'F':	['D',	'G',	'H',	'I'],	
									'G':	['F'],	
									'H':	['F'],	
									'I':	['F']}	
	
The dictionary represents graph vertices and edges. We use strings to represent graph 
vertices: B in the graph picture is 'B', and so on. Each of the vertices is a key in the 
dictionary graph. Each line corresponds to a key: value pair, where the value is a list of 
edges from the vertex key. The edge is simply represented by the destination vertex of the 
edge.  In our example, B has a single edge to C, and thus we have a single-item list for 
the value of the 'B' key. On the other hand, vertex key 'F' has a four-item list 
corresponding to its four edges. 
 
We have undirected graphs in this puzzle, meaning that each edge is undirected. This 
means that if we can traverse an edge from vertex B to vertex C, we can traverse the edge 
in the opposite direction from vertex C to vertex B. For our dictionary representation, this 
means that if a vertex key X has a vertex Y in its value list, then vertex key Y will also 
have vertex X in its value list. Check the dictionary graph above for this symmetry 
condition. 
 
It is important to note that we do not want to depend on any particular order of the keys 
in the dictionary. The code we write should discover that the following graph 
representation graph2 corresponds to a bipartite graph and color it properly. If we start 
with the same vertex and color for input graph and graph2, we should get the exact same 
coloring.  
 
graph2	=	{'F':	['D',	'G',	'H’,	‘I’],	
										'B':	['C'],	
										'D':	['C',	'E',	'F'],	
										'E':	['D'],	
										'H':	['F'],	
										'C':	[‘B’,	'D'],	
	 				'G':	['F'],	
										'I':	['F']}	
 
Note that the execution of the algorithm shown in the 8 pictures corresponds to either 
dictionary graph or graph2. The order in which vertices are colored does depend on the 
ordering of the value lists. This is why, for example, after vertex D is colored, G is 
colored before H, which is colored before I. 
 
The code for bipartite graph coloring in bipartite.py closely follows the pseudocode 
presented earlier.  
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Exercises 
 
Exercise 1: The bipartite graph checker assumes that the graph is connected. Your social 
circle may contain disconnected components as in the example below – a variant of the 
earlier example.  
 

  
 
Modify the code so it works on the above type of graph.  The current code will only color 
two vertices A and B in the graph if the start vertex argument to bipartiteGraphColor 
is A or B, and leave C through I uncolored.  
 
Create a parent procedure that invokes bipartiteGraphColor on the input graph with 
some starting vertex.  Then, check that all vertices in the input graph are colored. If not, 
begin with an uncolored vertex and run bipartiteGraphColor starting with this vertex.  
Continue till all vertices in the input graph are colored. Once you have colored all of the 
vertices in each of the components, output dinner invitations provided all of the 
components are bipartite. 
 
Exercise 2: Modify the procedure bipartiteGraphColor so it prints a cyclic path from 
the start vertex that cannot be colored using two colors, if such a path exists in the graph. 
Such a path will exist if the graph is not bipartite, and will not if the graph is bipartite. 
The cycle may not include the start vertex, but will be reachable from the start vertex in 
the case where the graph is not bipartite.  Suppose you are given the graph below: 
 

graphc	=	{'A':	['B',	'D'	'C'],	
										'B':	['C',	'A',	'B'],	
										'C':	['D',	'B',	'A'],	
										'D':	['A',	'C',	'B']}	

 
Your modified procedure should output: 
 

Here	is	a	cyclic	path	that	cannot	be	colored	['A',	'B',	'C',	'D',	
'B']	
(False,	{})	
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Exercise 3: The procedure bipartiteGraphColor embodies depth-first search. The 
code below makes recursive calls following a sequence of vertices. 
 
14.	 				for	vertex	in	graph[start]:	
15.	 								val,	coloring	=	bipartiteGraphColor(graph,\	
15a.																										vertex,	coloring,	newcolor)	
	
Rather than coloring the graph, suppose we wish to find paths between pairs of vertices. 
Write a function findPath that finds and returns a path from a start vertex to an end 
vertex if such a path exists in the graph, and returns None if it does not. If we run 
findP

	

ath on the dictionary graph, with start vertex 'B' and end vertex 'I', it should 
find the path ['B',	'C',	'D',	'F',	'I']. 
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