

REVIEW of Individual Assignment 2: Risk Assessment & Benefit Cost Analysis

Frameworks and Models in Engineering Systems (FAMES)

Spring 2006

Sgouris Sgouridis

MIT Cambridge, MA April, 6th 2006

Assignment IA2: Risk Assessment

 Application of Risk Assessment on a simplified case of transportation of SNF

Figure by MIT OpenCourseWare.

Table 1: Network distances and Population Centers				
OD	Highway	Number	Population	Rail
pair	Distance (in	of		adjustment
	miles)	Cities		
1A	300	1	300.000	x1.1
2A	150	3	100.000 each	x1.2
3A	350	1	50.000	x0.9
4B	150	3	75.000 each	x1
5B	200	1	50.000	x1.3
6B	300	1	1.000.000	x0.8
BA	1000	4	100.000 each	x1.1
AX	1500	5	50.000 each	x1.1

Note that for rail access multiply the distances by the given factor.

IA2: Risk Assessment

- Points to notice:
 - Creating alternatives (straight forward)
 - Calculating Expected Value of accidents from the given probabilities
 - EV(X) = P(X) * V(X)
 - Probabilities
 - Error in 4 (given an accident happens)
 - This section does NOT consider transportation costs.

Mary's question (+ a hint for P3?)

• <a>www.bts.gov (useful site to keep in mind)

 The assignment's data are made up. Nevertheless use them for this solution.

IA2: Risk Assessment

- Brief Probability Review
 - What is the probability of an unbiased die returning 2 for three consecutive throws?
 - (1/6)^3
 - What is the probability of an unbiased die returning 2 at least once in three consecutive throws?
 - $-P(not 2) = (1-1/6)^3$
 - -P(at least one 2) = 1-P(not 2)

Questions on IA2 Risk Assessment ?

6

- What is BCA?
 - A way to compare alternatives
- Objective: normalizing benefits and costs in a way that are comparable internally and across projects.
- Key concept: value of money changes over time.
- Discount rate vs. interest rate and Opportunity costs.

- Different ways to compare:
 - Net Present Value (NPV) → recommended for IA2
 - Benefit Cost Ratio
 - Internal rate of return (IRR)
 - Payback Period
 - Cost-effectiveness ratio

- Calculate NPV for the different alternatives. The one with the higher NPV is chosen (absent politics).
- How to calculate NPV for discount rate r:
 - The value of a future sum (F) at N years:
 - $P = F(1 + r)^N$
 - The value of a RECURRING future sum (F) at N years:
 - $P = F[(1 1/(1+r)^N)/r]$

- Some issues to notice:
 - Net Present Value (NPV) → does not account for scale
 - Does NPV equals profit?
 - Benefit Cost Ratio → favors capital intensive projects vs. those with high recurring costs

10

Issues with BCA

- Monetization and implicit monetization
- Difficulty to compute bc due to uncertainty
- Evaluative complexity on costs and benefits
- Discounting non discountable events
- Distributive equity
- Aggregation (non transparency) and a devilish devil

12

- Choice of Discount rate depends on:
 - Opportunity cost of capital
- DR determines technology and choice preference.
 - Should state use different DR than business?

13