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Issues in Calculating an Inventory -- Allocation 
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Consider adding two elements to the scope of the analysis 
-- Use 
-- Disposal 

1 



Environmental Data – Use 

Summary 
Products EoL products of P 
Raw Material Products P 

Inputs/Outputs 
Description Quantity Units Details 

Annual Purchsed Nationwide 4.00E+07 kg / year Product P 
Annual Dispoal 4.00E+07 kg / year EoL P 

Emissions to air 1.00E+05 kg/year HC 
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Environmental Data – Disposal to Landfill 

Summary 
Products Methane 
Raw Material EoL products of P, MSW 

Inputs/Outputs 
Description Quantity Units Details 

Total annual methane 93 tonnes/year HC 
Use of raw material 118000 tonnes/year Solid Waste 

Emissions to air 93 tonnes/year HC 
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How Much Should be Allocated to Metal Wastes? 
Actual Landfill Material Flows 
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How Much Should be Allocated to Metal Wastes? 
Observed Landfill Emissions 
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Courtesy of U. S. EPA. 
“Solid Waste Management And Greenhouse Gases: A Life-Cycle Assessment of Emissions and Sinks”, EPA530-R-02-006, May 2002. 
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Allocation Issues in Inventory Analysis 

• ISO Definition: 
Inventory allocation :Partitioning the input or 

output flows of a unit process to the product 
system under focus 

•Emerges when a process within your product 
system is associated with a flow that is part of 
another product system (i.e., another life-cycle) 
– Multi-outflow 

– Multi-inflow 
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Allocation Examples: Chlor-Alkali Process 
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How can we handle allocation?
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Addressing Allocation Approaches 

•Partitioning: 
Method to apportion impacts between life-cycle 
under analysis and “other” flows 
– More applicable to accounting-oriented analysis 

•System expansion: 
Avoiding problem by expanding scope of analysis 
to include “other” flows 
– More applicable to change-oriented analysis 
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Classic Allocation Example: 
Electricity with Surplus Heat 
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Functional Unit: 
1 MT of Al Ingot 

— Partitioning  

Partitioning Strategies 

• Technical causality 
– Established relationship between magnitude of specific flows 

• e.g., science based assessment of landfill emissions 
–	 Usually requires treatment of intra-process flows to a great level 

of detail 
• E.g., energy used only for HCl production in chlor-alkali 

• Physical quantity 
–	 Mass – Energy content 
–	 Volume – Moles 
–	 Area 

• Social causality 
• Arbitrary number 

–	 E.g., 50/50 
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Allocation Examples: Chlor-Alkali Process 
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CHEMETICS
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Courtesy of Aker Kvaerner Chemetics. Used with permission.
See http://www.akerkvaerner.com/Internet/IndustriesAndServices/Pulping/BleachingChemicals/ChloralkaliProcess.htm



Classic Allocation Example: 

Electricity with Surplus Heat — System Expansion 
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Why System Expansion?
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Why System Expansion? 

•At first look, system expansion seems to greatly 
increase the scale of the analysis 

• In fact, much of the implied expanded analysis 
can be excluded in a comparative analysis (i.e., 
change-oriented assessments) 

• In practice 
– Scope should include activities required for 

credibility 

– Must be careful that activities are the same in 
different scenarios 
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Preferred Characteristics of an Allocation 
Scheme (Ekvall and Tillman 98, Klöpffer 96) 

•Effect-oriented (non-perverse) 
– Activities with higher impact should receive 

higher load of inventory 

•Politically acceptable to end-users 

•Applicable with available information 

•Consistent 

•Prevents double counting 

ESD.123/3.560: Industrial Ecology – Systems Perspectives 
Massachusetts Institute of Technology Randolph Kirchain Department of Materials Science & Engineering 

Introduction: Slide 74 

9 



Preferred Allocation Approach 

1.System Expansion 

2.Technical Causality 

3.Social Causality 

4.Physical Quantity 

5.Arbitrary Quantity 
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Open-loop Recycling: 
A common allocation challenge 
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Open-loop Recycling: 
A common allocation challenge 

Extraction 
(V1) 

Production 
Part A 
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1 

If the functional unit is 1 unit of Part A, we have a 
co-product of R1. How to allocate? 
Let’s try system expansion… 
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How do we allocate across Parts A, B, or C? 
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Approaches to Open-Loop Allocations 

• Cut-off method 
–	 Only loads directly caused by a product are assigned to that 

product 
–	 No data from outside of life-cycle are required 

• Loss of Quality 
–	 Allocated according to “quality” of material used 

• Closed-loop Approximation 
–	 All activities are part of a general materials system 
–	 Allocation across products could follow any partitioning strategy 

• Social causality, Mass 

• 50/50 Approximation 
–	 Initial and terminal life-cycles share virgin production and 

disposal 
–	 Recycled life-cycles share recycling burden 
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Common Open-Loop Recycling Method 

• System expansion approximation 
–	 Compared against lack of recycling (or another disposal option) 

–	 Typically only one generation 

–	 Easily extensible to multiple generations, but requires data 

–	 Leads to credits given to inventory 

–	 Very widely applied 

–	 Implicitly gives significant credit to primary production for 
making recyclable resources available (Newell & Field 98) 

–	 In practice, often does not preserve additivity 

–	 Generally, should be reserved for comparitive assessments 
(change oriented LCA) 
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Preferred Allocation Approach 

1.System Expansion 

2.Technical Causality 

3.Social Causality 

4.Physical Quantity 

5.Arbitrary Quantity 
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