Valuation of Life Cycle Inventories The EPS System

ESD.123; 2006

Massachusetts Institute of Technology Cambridge, Massachusetts MSL Materials Systems Laboratory

Life Cycle Analysis: Three stage Process SETAC Life Cycle Framework

Complex When Dealing With A Real Problem

Inventory Analysis Goals

- □ To Establish <u>Baseline Information</u> for Specific Products or Activities
- □ To Rank the <u>Relative Contributions</u> from Specific Stages in Life Cycle
- □ To Understand <u>Relative Environmental Burdens</u> of Competing Products or Activities
- □ To Use as Guide for :
 - Process and Product Evaluation by Designers
 - Information and Assessment for Consumers
 - Guidelines and Indications for Government
- □ Issue of Valuation for Improvement Analysis

Massachusetts Institute of Technology Cambridge, Massachusetts Materials Systems Laboratory

Improvement Analysis & Valuation

Massachusetts Institute of Technology Cambridge, Massachusetts Materials Systems Laboratory

Improvement Analysis

- □ Based on Pertinent Metrics, Make Decisions to Improve Environment
- ☐ How to Decide Between Two "Evils:"
 - Product A, w/ 1,000 kg of CO2 emissions? => Global Warming
 - Product B, w/ 3,000 kg of CO2 emissions? => Global Warming
 - Product C, w/ 1,000 kg of SO2 emissions => Acid Rain
- □ Valuation: Balance of Trade-Offs Between
 - Environmental
 - Economic
 - Technological / Engineering

Massachusetts Institute of Technology Cambridge, Massachusetts

Materials Systems Laboratory

Screening

Massachusetts Institute of Technology Cambridge, Massachusetts

Indexing

Massachusetts Institute of Technology Cambridge, Massachusetts

NSL Materials Systems Laboratory

Impact Assessment

- ☐ Attempt to describe environmental consequences of the activity being studied
 - Accomplished by translating inventory into consequence (or impact)
- □ Aggregation of inventory information into fewer metrics
- □ Mechanics complex (and controversial)

Massachusetts Institute of Technology Cambridge, Massachusetts Materials Systems Laboratory

More Complex Valuations

Issues - 1

- □ Translating "emissions" into "impact"
 - CO₂ release → increased thermal absorption
 - → raises terrestrial temperature
 - So what?

higher temps → increase desertification

- → increase glacial melting
- → increase ocean temperature
- → ...
- □ Cause and effect chains; necessary, but lengthy
 - Recall issues of scoping in inventory, leading to....

Massachusetts Institute of Technology Cambridge, Massachusetts

Issues - 2 Which effects to track? ISO establishes 3 broad categories of concern Resource use Human health Ecological consequences Objections Complete list? Double counting?

Massachusetts Institute of Technology

Cambridge, Massachusetts

MSL Materials Systems Laboratory

Lots of approaches □ In the end, all trying to do the same thing inventory of emissions → consequences of emissions □ Do it yourself? □ Or rely on others to do it for you..... Massachusetts Institute of Technology Cambridge, Massachusetts Massachusetts Massachusetts Massachusetts Massachusetts Materials Systems Laboratory

Impact Assessment

- □ Impact category definition
 - Which impacts are of concern
 - How to go from emissions to impacts
- Classification
 - Categorize impacts according to key environmental stressors
 (e.g. "global warming potential," etc.
- □ Characterization (or quantification)
 - What's the size of the impact?
- □ Valuation
 - Rank or aggregate for comparative assessment

Massachusetts Institute of Technology Cambridge, Massachusetts Materials Systems Laboratory

Environmental Priorities Strategy: EPS

- □ System Objectives
 - Introduce Environmentally Sound Product Development
 - Establish Common Database for Life Cycle Inventories
 - Develop PC-Based Tools for Eco- Product Design
 - Delineate Environmental Effects throughout Product Life
 - Inform & Educate Industrial Target Groups

Massachusetts Institute of Technology Cambridge, Massachusetts

Features of Environmental Priority Strategies

- □ Based on Swedish Parliament's Safeguard Subjects:
 - Biodiversity
 - Production (reproduction of biological organisms)
 - Human Health
 - Resources
 - Aesthetics
- □ "Environmental Burden" Determined For Activities & Processes

Massachusetts Institute of Technology Cambridge, Massachusetts Materials Systems Laboratory

Institutional Features of EPS

- □ Scientific Analysis of Effects of Emissions
 - Done at Chalmers Institute
- □ Inventory Work To Be Done By Individual Firms
- □ Values From Various Sources

Massachusetts Institute of Technology Cambridge, Massachusetts MSL Materials Systems Laboratory

Features of Environmental Priority Strategies

- System Designed to Allow "Objective"
 Decisionmaking
- ☐ Monetization Reduces Complex Data To One Numerical Value
- □ "Environmental Load" Assigned To Each Resource, Emission & Activity On A Per Unit Mass Basis
- □ Load Applied For Each Element Of LCA Inventory & Summed

Massachusetts Institute of Technology Cambridge, Massachusetts Materials Systems Laboratory

EPS Basic Principle

Environmental x Quantity = Environmental Load Index Load Value

Units for ELI: Environmental Load Units / quantity
= ELU / kg or ELU/part or ELU/ m²

Units for ELV: Environmental Load Units
= ELU

Massachusetts Institute of Technology Cambridge, Massachusetts

Case I: Polypropene Bucket

- □ Weight: 0.7 kg
- □ Material: Polypropene
 - Environmental Load Index: 0.68 ELU / kg
- □ Process: Injection Molding
 - Environmental Load Index: 0.08 ELU / kg

Massachusetts Institute of Technology Cambridge, Massachusetts

Defined Safeguard Subjects

- □ Biodiversity
- □ Human Health
- □ Production
- □ Resources
- □ Aesthetic Values

Massachusetts Institute of Technology Cambridge, Massachusetts Materials Systems I aboratory

EPS Calculation of ELV for Bucket

Materials & Processes	ELV = ELI * Quantity
Material: Polypropene	o.68 ELU/kg * o.7 kg = 0.48 ELU
Process: Injection Molding	0.08 ELU/kg * 0.7 kg = 0.06 ELU
Total Environmental Load Value:	0.48 ELU + 0.06 ELU = 0.54 ELU

Massachusetts Institute of Technology Cambridge, Massachusetts Materials Systems Laboratory

"Unit Effects" for Safeguard Subjects

- □ Human Health: Unit Effects for CO2
 - Excess mortality due to increased temperature in tropics
 - Temperature increase leads to flooding and therefore accidental deaths
 - Global warming leads to increased desertification;
 less food; more starvation

Massachusetts Institute of Technology Cambridge, Massachusetts

"Value Factors" for Unit Effects

□ Fı	Relative Cost to Reduce 1 kg Emission
□ F2	Extent of Affected Area
□ F3	Regularity of the Problem
□ F4	Duration of Effect
□ F5	Significance of 1 kg Substance wrt Total
	-

Massachusetts Institute of Technology Cambridge, Massachusetts MSL Materials Systems Laboratory

EPS Valuation Bases - 1995 (continued)

<u>Energy</u>			
Impact	ELU per impact	sd factor	Notes
1 MJ renewable electrical	0.02	2	economic value
1 MJ renewable thermal	0.01	2	economic value

Human Health			
Impact	ELU per impact	sd factor	Notes
1 excess death	1,000,000	10	normalized from
1 man-yr painful morbidity	100,000	10	several studies
1 man-yr other morbidity	10,000	10	
1 man-yr severe nuisance	1,000	10	
1 man-yr moderate nuisance	100	10	

Massachusetts Institute of Technology Cambridge, Massachusetts Materials Systems Laboratory

EPS Valuation Bases -- 1995

<u>Biodiversity</u>			
Impact	ELU of impact	sd factor	Notes
Extinction of medium sized animals and plants		10	10 ELU per person per year; 1E+09 persons; 1E+05 years
General and global impact on diodiversity		5	100 ELU per person; 5E+09 persons
Biological Production			
	ELU of		
Impact	impact	sd factor	Notes
Impact 1 kg of crop seed		sd factor 2	Notes economic value
•	0.2	sd factor 2 2	
1 kg of crop seed	0.2 0.025	sd factor 2 2 3	economic value
1 kg of crop seed 1 kg of wood	0.2 0.025 1	2	economic value

Massachusetts Institute of Technology Cambridge, Massachusetts

Materials Systems Laboratory

EPS Valuation Bases - 2000

1 Impact Category - Human health	Category indicat	Indicator unit	Weighting facto U
1 Life expectancy	YOLL	Person-years	85000
2 Severe morbidity	Severe morbidity	Person-years	100000
3 Morbidity	Morbidity	Person-years	10000
4 Severe nuisance	Severe nuisance	Person-years	10000
5 Nuisance	Nuisance	Person-years	100
2 Impact Category - Ecosystem pro-	Category indicat	Indicator unit	Weighting facto U
1 Crop growth capacity	Crop	kg	0.15
2 Wood growth capacity	Wood	kg	0.04
3 Fish and meat production capacity	Fish and meat	kg	1
4 Soil acidification	Base cat-ion capa	mole H+ -equivaler	0.01
5 Production capacity for irrigation wat	Irrigation water	kg	0.003
6 Production capacity for drinking water	Drinking water	kg	0.03

Massachusetts Institute of Technology Cambridge, Massachusetts

EPS Valuation Bases - 2000

	Import Catagon. Abiatic stock re	Catanani indicat	Indicator unit	Maighting factal II
	Impact Category - Abiotic stock re			Weighting facto U
	Depletion of oil reserves	Fossil oil	kg	0.506
2	Depletion of coal reserves	Fossil coal	kg	0.0498
3	Depletion of natural gas reserves	Natural gas	kg	1.1
4	Depletion of Ag reserves	Ag reserves	kg of element	54000
5	Depletion of Al reserves	Al reserves	kg of element	0.439
6	Depletion of Ar reserves	Ar reserves	kg of element	0
7	Depletion of As reserves	As reserves	kg of element	1490
8	Depletion of Au reserves	Au reserves	kg of element	1190000
9	Depletion of B reserves	B reserves	kg of element	0.05
10	Depletion of Ba reserves	Ba reserves	kg of element	4.45
11	Depletion of Bi reserves	Bi reserves	kg of element	24100

Massachusetts Institute of Technology Cambridge, Massachusetts Materials Systems Laborator

Environmental Load Index:

$$ELI = \sum_{\substack{k=1,5\\\text{safeguard}\\\text{subjects}}} \sum_{\substack{j=1,n\\\text{unit}\\\text{effects}}} \prod_{\substack{i=1,5\\\text{factors}}} F_{ijk}$$

Units for ELI: Environmental Load Units / quantity
= ELU / kg or ELU/part or ELU/ m²

Massachusetts Institute of Technology Cambridge, Massachusetts Materials Systems Laboratory

EPS Valuation Bases - 2000

4	Impact Category - Riodiversity	Category indicat	Indicator unit	Weighting facts Un
		NEX	dimensionless	1.1E+11
1	Species extinction			1.1E+11
ı	Impact Category - Biodiversity	Category indicat	Indicator unit	Weighting facto Un
i	Impact Category - Biodiversity	Category indicat	Indicator unit	Weighting facto Un
i	Innered Codemon Birdinardia	0-4	In diameter world	W-1-14' F4-11-
			_	
			-	
	Depletion of Zr reserves	Zr reserves	kg of element	12.5
		7r recented		
j	Depletion of Zn reserves	Zn reserves	kg of element	57.1
	Depletion of Yb reserves	Yb reserves	kg of element	1980
j	Depletion of Y reserves	Y reserves	kg of element	143
	Depletion of W reserves	W reserves	kg of element	2120
	Depletion of V reserves	V reserves	kg of element	56
	Depletion of U reserves	U reserves	kg of element	1190
	Depletion of Tm reserves	Tm reserves	kg of element	9900

EPS Concept

EPS Estimated Emission Indices for CO2 ELI

Subst	Activity	Safegd	Unit	Impact	F1	F2	F3	F4	F5	ELI
		Subject	Effect	Туре	Cost	Extent	Frequen cy	Duration	Contribution	(ELU/KG)
CO2	air emiss	Health	Death: heat	Temp.	1E+06	-3E+06	1	100	2.9E-16	-0.087
	air emiss	Health	Death: flood	Temp.	1E+06	1E+04	1	100	2.9E-16	0.00029
	air emiss	Health	Death: starv	Temp.	1E+06	1E+05	1	100	2.9E-16	0.0029
	air emiss	Health	Starvation	Temp.	1E+05	5E+07	1	100	2.9E-16	0.145
	air emiss	Biodiversity	Decrease	Temp.	5E+11	1	2	100	2.9E-16	0.029
	air emiss	Production	^ wood	Temp.	2.5E-02	-7.2E+10	1	100	2.9E-16	-0.0000522
	air emiss	Production	^ crops	Temp.	2E-01	-2.3E+11	1	100	2.9E-16	-0.001334
	air emission	Production	V crops	Temp.	2E-01	1.2E+10	1	100	2.9E-16	0.0000696
									ELI =	0.0888734

Massachusetts Institute of Technology Cambridge, Massachusetts

ELU s for Processes

For Process: ELU ={ELI}*{Inventory}*{Quantity}

- ■Matrix Multiplication
- -ELI Dimensions: 1 x n
 - -With n emissions, resources used
- -Inventory Dimensions: n x m
- -With m subprocesses represented
- -Quantity dimension Scalar
- -Input by User

Summing Subprocesses: ELU(process) = Σ ELU(subs)

Massachusetts Institute of Technology Cambridge, Massachusetts

Estimated Emission Indices: 2000 CO2 ELI

	A		В	C	D	E	F	G	H	- 1	J	K
	CO2											
2		1	Human health	1	Life expectancy	YOLL	85000	5.90E+06	100	1.26E-16	7.43E-08	6.32E-03
3		1	Human health	1	Life expectancy	YOLL	85000	5.40E+09	1	1.26E-16	6.80E-07	5.78E-02
1		1	Human health	1	Life expectancy	YOLL	85000	4.50E+07	1	1.26E-16	5.67E-09	4.82E-04
5		1	Human health	1	Life expectancy	YOLL	85000	2.63E+06	100	1.26E-16	3.31E-08	2.81E-03
3		1	Human health	2	Severe morbidi	Severe r	100000	2.50E+09	1	1.26E-16	3.15E-07	3.15E-02
7		1	Human health	2	Severe morbidi	Severe r	100000	3.00E+08	1	1.26E-16	3.78E-08	3.78E-03
8	0.0	1	Human health	3	Morbidity	Morbidity	10000	2.50E+09	- 1	1.26E-16	3.15E-07	3.15E-03
9	1	1	Human health	3	Morbidity	Morbidity	10000	2.70E+09	- 1	1.26E-16	3.40E-07	3.40E-03
10		2	Ecosystem product	1	Crop growth ca	Crop	0.15	6.00E+12	1	1.26E-16	7.56E-04	1.13E-04
11	1	2	Ecosystem product	2	Wood growth o	Wood	0.04	-9.20E+12	1	1.26E-16	-1.16E-03	-4.64E-05
12		2	Ecosystem product	2	Wood growth o	Wood	0.04	-3.12E+12	100	1.26E-16	-3.93E-02	-1.57E-03
13		4	Biodiversity	1	Species extinct	NEX	1E+11	1.00E+00	100	1.26E-16	1.26E-14	1.39E-03
14												1.09E-01 /k
			Massachusetts Inst							Mada	NSI rials Systems	

Environmental Load Value For Steel Grill Opening Panel

Cambridge, Massachusetts

_					
	Material/ Product	Process/ Activity	Environmental Load Unit	Quantity	Environmental Load Value
	oduction Ilv. Steel	Manufact	0.98 ELU/kg	9.0 kg	8.82 ELU
		Stamping	0.06 ELU/kg	9.0 kg	0.54 ELU
		SpotWeld	0.004 ELU/spot	48 spots	0.19 ELU
		Painting	0.01 ELU/m ²	0.6 m²	0.01 ELU
Ste	eel Scrap	Recycled Material	-0.92 ELU/kg	3.0 kg	-2.76 ELU
	oduct Use el /Petrol	Manufact/ Combustion	0.82 ELU/kg	48 kg	39.36 ELU
	sposal ılv. Steel	Material	-0.92 ELU/kg	6.0 kg	-5.53 ELU
				TOTAL:	40.64 ELU

Assachusetts Institute of Technology	MSL
Cambridge, Massachusetts	Materials Systems Laboratory

Environmental Load Value: GMT Composite Grill Panel

Material/ Product	Process/ Activity	Environmental Load Unit	Quantity	Environmental Load Value
Production				
GMT- Comp	Manufact	0.58 ELU/kg	4.0 kg	2.32 ELU
	Pressing	0.03 ELU/kg	4.0 kg	0.12 ELU
	Painting			
GMT- Comp	Recycld Matl	-0.58 ELU/kg	0.3 kg	-0.17 ELU
Product Use				
Fuel /Petrol	Manufact/ Combustion	0.82 ELU/kg	29.6 kg	24.27 ELU
Disposal				
GMT- Comp	Energy Reuse	-0.21 ELU/kg	3.7 kg	-0.78 ELU
			TOTAL:	25.76 ELU

Massachusetts Institute of Technology
Cambridge, Massachusetts

ASL aterials Systems Laboratory

Materials Systems Laboratory

Basic Valuations - EPS

Massachusetts Institute of Technology

Cambridge, Massachusetts

Limitations of EPS

- Monetary Value of Each Resource and Emission Determined By:
 - Market Prices
 - Government Allocations
 - Contingent Valuation
- □ Money As A Measure of Value
 - Implies Construction of Linear Value Function
 - Each Unit Effect Adds Linearly to Final ELI

 > Independent of Size of Each Unit Effect

Massachusetts Institute of Technology Cambridge, Massachusetts Materials Systems Laboratory

Resource Consumption ELI Table

3 300											1/2 New Shee
	A	8	C	D	E	F	G	н	1	J	K
28	Table 6	Estimated i		ssil fuel and r							
29	0.50			Environmen		Value of					
30	Activity		Subject	Effect	Impact	effect-ELU	Extension	stddev	Contribution		Index
31						dennaments.			******		
32	Fossil gas	restauring	estate	all	Land use						0.4
33	Oil	restauring	estate		Land use	0.2	2	1.5	1	- 1	0.4
34	Coal	restauring	estate	al	Land use	0.025	4	1.5	- 1	- 1	0.1
35			************								
36	Ag	Atternative	resource	all	all	0.025	875000	2	1	1	21875
37	Al	Atternative	resource	all	all	0.025	3.571429	2	1	- 1	0.089286
38	Au	Atemative	resource	al	all	0.025	35000000	2	-1	- 1	875000
39	Co	Alternative	resource	all	all	0.025	3043.478	2	- 1	- 1	76.08695
40	Cr	Alternative	resource	all	al	0.025	350	2	1	- 1	8.75
41	Cu	Atternative	resource	all	al	0.025	1206.897	2	1	- 1	30.17243
42	Fe	Alternative	resource	all	al	0.025	3.5	2	- 1	- 1	0.0875
43	Mn	Alternative	resource	all	al	0.025	38.88889	2	1	- 1	0.972222
44	Mo	Atternative	resource	all	all	0.025	58333.33	2	1	- 1	1458.333
45	Ni	Alternative	resource	all	all	0.025	972.2222	2	1	- 1	24.30556
46	Pb	Alternative	resource	all	all	0.025	7000	2	. 1	- 1	175
47	Pt	Alternative	resource	all	all	0.025	14000000	2	1.	- 3	350000
48	Rh	Alternative	resource	all	all	0.025	70000000	2	- 1	- 1	1750000
49	Sn	Atternative	resource	all	all	0.025	46666.67	2	1	- 1	1166.667
50	Ti	Alternative	resource	al	oli	0.025	15.90909	2	1	- 1	0.397727
51	V.	Alternative	resource	all	all	0.025	466.6667	2	- 1	- 1	11.66667
52	Zn	Atternative	resource	all	all	0.025	853.6585	2	1	1	21.34146
53							**********				

Massachusetts Institute of Technology Cambridge, Massachusetts

Air and Water ELIs (part 1)

																NewShe
A		В	C	D	E	F	G	H	I	J	K	L	H	N	0	P
Table	Estin	nated i	ndices for en	missions to e	ir and water											
							-			-						
Subste	nce Activ	my_	Saleguard		Impact	Time	F1 value	F2 extensio		F3 freq		F4 dure		F5 contribut		EU
-			Subject		type	Frame (yr)	relative		stddev		stddev		stddev	to total	stddev	(ELU/kg)
CFC-11	gen t		all	temperature		100					1	1	1	3400		302.161
CFO-11	em t		human heal		population	100			-					2700		204, 10
CFC-11	iem t		human heal		population	100		125000	- 1		1	- 1	- 5	1.0E-11	10	1.
Total E				>>>>>>>>		>>>>>>>		3333333333	>>>>>	933333	022222	022222	933333	*******	333333333	
IICH4	em t	nin o	all	greenhouse	eCO2-equiv	100	0.089873	1	- 1	11	1.5	-1	1	1	1	0.97760
IICH4	iom t		iell	axident	ethene equi	1	0.0005	1	- 1	0.7	1.5	- 1	1	1	- 1	0.0003
Total E				>>>>>>>>>	>>>>>>>	>>>>>>>	>>>>>>>>>	>>>>>>>	>>>>>	*****	*****	*****	*****	*******	>>>>>>>	0.97795
CO	em t		health	nuisance	CO-conc	1	100	7.5E+08	3	0.1	1	0.01	5	6.0E-13	10	
000	em t		health		CO-conc	. 1	100000	7.5E+08	3	0.001	- 5	0.01	- 5	6.0E-13	10	0.000
IIICO .	jem t		ilei	CO2 effect		100			1	1	1.5	1	1	1	1	0.2668
IICO			ali	oxident	ethene-equ			1	. 1	3	1.5	1	1	1	1	0.00
Total E				>>>>>>				>>>>>>>>	>>>>>	*****	10>>>>>	100	*****	*******	>>>>>>>	0.2686
SOO5	em t		health		temperature			-3000000	- 3		1	100	1	2.9E-16 2.9E-16	2	-0.01
BC05	jem t		health		temperature			10000	10	1		100		2.9E-16	- 2	0.0000
UU2	em t		heath		memperature			50000000	10			100	1	2.9E-16		0.000
000	em t		biodversity		temperature			50000000	10		10	100		2.9E-16		0.00
200	sem t		production		temperature			-7.2E -10	1	- 4	10	100	-	2.9E-16		-5.2E-4
B	iem t			increased				-2.3E+11	- 1		-	100	-	2.9E-16	- 5	-0.001
200	em t			decreased				1.2E+10	- 1		1	100	1	2.9E-16	- 5	0.0000
Total E				333333333		3333333333	222222222	3333333333	222222	022222	*****	022222	*****	022222222	333333333	0.0388
E here	em t	D BIT	human heat	Prodeste	03.98%	1	100	200000	1.0	1	1	1	1	2.5E-11	10	0.000
Ethene	em t			decreasing		1	0.2	2.2E+11	- 4	1	1	1	1	1.0E-13	5	0.004
SEthene	iem t		all	greenhouse	eglobal warn	100		1	1	- 11	1.5	1	1	1		0.97760
Total E	LI> 0:	982427	>>>>>>>>	333333333	>>>>>>>>	>>>>>>>	>>>>>>>>>	333333333	3333333	999999	999999	0000000	9>>>>>	9>>>>>>>	3333333333	0.9824
(PNOx	em t		human heal	Nestation	NO2-mean	1	1000	15000000	3	1	-1	0.001	1	1.3E-11	1.2	0.00011
NOx .	jem t		human heal		NO2medel	1	1000	£000000	3	1	1	0.001	1	1.3E-11	1.2	0.00003
NOx	jens t		diversity	decreased		100		1	- 1	1	1	1	1	1.3E-13	2	0.04
NOx.	em t		production		deposition	100		-1.2E+08	1	1	1	1	1	4.0E-12	. 4	-1.2E-4
BNOx	iem t	D mir	production	decrease	03, growth	1	0.2	2.2E+11	4	1 1	1 1	1 1	1 1	2.0E-12	5	0.084

Materials Systems Laboratory

Massachusetts Institute of Technology Cambridge, Massachusetts

Land ELIs

Air and Water ELIs (part 2)

Using EPS - Step 1 & 2

Using EPS - Step 3 (or 1): Describe The Process Steps For Each Alternative

Massachusetts Institute of Technology Cambridge, Massachusetts Materials Systems Laboratory

Using EPS - Final Comparison

