Issues in Supply Chain Strategy

Don Rosenfield

Supply chain strategy involves a number of issues

- Understanding inputs and outputs
- Strategies for a dispersed network
- Dealing with some trends in globalization
- Methods for extending benefits
- New trends and what they imply

Framework for strategic analysis: Strategic outputs

- Delivery or service time
- Customization and breadth of product line or service
- Service level on inventory
- Variation of service level or delivery time

As for the case of manufacturing, a logistics system needs to align logistics policies to further specific strategic goals

Supply chain and logistics decisions: inputs

- Inventory position
- Inventory levels
- Transportation choices
- Supplier choices
- Structure Number of facilities, number of stages
- Distribution flow
- Possible customization point (push-pull)

Supply chain choices

source: HP

Some factors to consider

- Relative transportation costs
- Demand uncertainty (e.g. fast movers at many locations
- Product variety

Dispersed supply chains address a number of issues

- Scale
- Logistics and flow patterns
- Focus
- Global flexibility and access
- Access to R&D

Product/Market-Process Focus

Mean of Focus

- Volume
- Product
- Market
- Process

Example		Off	On	
		Low Vol. High Vol.		Low Vol. High Vol.
	Job Batch Line	Detroit Saginaw Lima	Job Batch Line	Detroit Fremont Lancaster Mayesville

Network for Multi-location supply chain

Formulation for general case

$$\sum_{k} y_{ikl} \leq A_{il}$$

$$\sum_{j,l} x_{lkj} f_{l} \leq A_{k} \quad \text{where f is the unit usage of product } l$$

$$\sum_{k} x_{lkj} \geq D_{lj}$$

$$\sum_{i} y_{ikl} \geq \sum_{j} x_{lkj}$$

$$\sum_{lj} x_{lkj} \leq k z_{k}, z_{k} \quad \text{is zero or one, forcing constraint}$$

Could also have shared cap at plants.With no warehouses, define plant variables to go to customers directly. Can add another level for sourcing or two stages of plants.

Some global modeling issues

- Duties are generally linear, as are taxes
- The general multi-stage model applies
- The particular case of tax havens can be complex. For many countries, one generally assumes funds are reinvested or not repatriated.
- Sourcing can add an additional factor of complexity
- Data collection can be a major issue
- A different model is used for the "Asian" paradigm

The Asian Paradigm Model

Examines long lead time replenishment subject to

- Dual modes of transportation
- Demand uncertainty
- Minimum container size
- Accelerated requirements schedule with constrained production

Example: Polaroid JoyCams

The Asian Paradigm Model

Approach:

-Dual safety stock (one if by air two if by sea)

-Order by ocean if one month demand less on-hand plus on-order

exceeds level one safety stock

-Order by air if one week demand less on-hand plus on-order

exceeds level two safety stock

Network Solution to Polaroid Problem

Some Examples of Strategies

- **1. Different process steps and scale, significant logistics**
 - **∇** Central stage 1, decentralized stage 2
- 2. Significant central R&D
 - **Central plant for at least early life cycle**
- 3. Significant product flexibility
 - **▶** Decentralized satellite plants for some stages
- The examples underscore the need to develop a strategically consistent focus approach and then appropriately analyze scale and logistics

A suggested approach

- Develop a strategy and appropriate means of focus
- Using data, benchmarking and analysis of technology, develop scale curves
- Identify major decision choices and service requirements covering plant and process options
- Do the analysis

Case Study Worldwide Consumer Goods Manufacturer

- 25 Product Groups
- About 10 Production Locations
- Variety of Product Values and Weights
- Over Capacity
- Lack of Focus
- Significant Tax Issues

Why Separate?

- Differing Scale
- Market presence
- Tax Laws
- Focus
- Technological complexity

Approach

- Cross sectional analysis
- Model of variable costs
- Tax analysis
- Detailed analysis of actual fixed costs

Solution:

- Move "light" products to tax havens
- Better focus facilities by product group

Globalization adds some additional complexities beyond network issues

- Increase in worldwide exports
- Business level trends
 - lower scale, higher-skill level manufacturing systems such as FMS
 - JIT systems that also underscore the need for sophisticated vendor infrastructure
 - TQM and organizational learning
 - Faster product development
 - Customization needs
 - High-value products such as wafers and chips

Complexities (continued)

- Macro level trends
 - Large, sophisticated overseas markets with local needs
 - Non-tariff barriers
 - Regionalized trading economies
- Variable factor costs
- Particular case of China

Global strategies emphasize some additional factors

- Global product volumes
- Regional presence for some products
- Balancing infrastructure versus cost (Nokia vs. Motorola)
- Flexibility in several ways
- Global product and development supply chains

There are a number of tradeoffs in global operations

- **尽** Scale economies
- **▶** Flexibility for servicing a high-cost market

The Basic Model

- **N** = **Number of markets of equal size**
- **M** = **Number of plants**
- **D** = Total demand
- $C_{1 =}$ Cost to distribute and handle the same market
- $C_2 = Cost to distribute and handle to other markets (C_1 < C_2)$
- F(X) = Cost to produce XF'(X) > 0, F'' ≤ 0

However, any significant insights depend on a stochastic model for market production costs

Two critical parts of the model:

 Costs of capacity and production
 G₁ (y) = Cost of plant size y with no production (fixed)
 xG₂(y) – Variable cost to produce x given y (periodic)

G₁ is concave, G₂ is non-increasing Plants must satisfy at least their own markets

2. Model for exchange rates and production costs

Production cost in any market in period n is equal to a base cost times a product of n IID multipliers

What is policy in each period?

Suppose there are M plants with capacities Yj and that demand (still deterministic) is D. Define

j(**l**) = index of plant with the l-th highest cost multiplier

Thus, the number of plants with production being cut back is $V = D = \sum_{i=1}^{i_{i}} (V = D)$

$$l^* = l_1 + \frac{Y - D - \sum_{l=1} (Y_{j(l)} - D_{i(l)})}{Y_{j(l_1+1)} - D_{i(l_1+1)}}$$

where

$$l_1 = \max\left\{m: \sum_{l=1}^m \left(Y_{j(l)} - D_{i(l)}\right) \le Y - D\right\}$$

Example of Calculation

- No With M = 5 plants and a capacity of 133 1/3 units, the index is 2, so we seek the average of the top 2 multipliers
- The top multiplier is expected to be the 83 1/3 percentile and the next is at 66 2/3, yielding .97 and .43 standard deviations above the mean
- ∧ This yields .70 standard deviations above the log
 mean

Candidate optima are based on the piecewise-linear model

For M = 5, for example

M = 1, Y = 100 M = 2, Y = 180 M = 3, Y = 135, 240 M = 4, Y = 120, 160, 280M = 5, Y = 112.5, 133 1/3, 175, 300

Exchange rate model

The Multi-Period Model

Facilities Strategy Given Uncertainty

(adapted from Huchzermeir and Cohen)

Five-Stage Approach to Strategy Development

Extending the supply chain: The Storefront concept: This concept is based on the notion that the retailing or dealer aspect of a distribution chain performs many functions

- Sales
- Service
- Parts
- Demonstration merchandise
- Inventory
- Customer contact

There is no reason why these cannot be separated

The Approach was implemented at Union Carbide's Packaged Gas Business

- Carbide delivers cylinders of gas (or bulk gas) and supplies to branches from plants.
- Carbide converted some branches to storefronts Customer contact points and "walk-in" service points.
- The service was still the same.
- The economics was an elimination of three steps out of five.
 - 1 Filling and Storing cylinders and parts centrally
 - 2 Loading cylinders and parts on trailers and delivering them to branches
 - 3 Unloading and storing cylinders and parts at branches.
 - 4 Warehousing and handling

5 - Loading parts and cylinders on truck routes and delivering them to customers

Image by MIT OpenCourseWare.

The most profound example is for the car companies

- Why do dealers need to be sales offices, service centers and inventory locations?
- Distribution and inventory can be centralized
- Sales can be decentralized and established on a different scale
- In addition, the other parts of the business can establish new service entities

Summary

- Methods for analyzing focus, scale flow, etc.
- Impact of new markets and technologies
- Global product design and flow patterns
- Long lead times
- Flexibility

ESD.273J / 1.270J Logistics and Supply Chain Management Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.