

Logistics and Distribution Systems

Dynamic Economic Lot Sizing Model

Outline

 \odot The Need for DELS

DELS without capacity constraints:

- ZIO policy;
- Shortest path algorithm.

• DELS with capacity constraints:

- Capacity constrained production sequences;
- Shortest path algorithm.

Strategic Sourcing Inputs

Key Drivers in Sourcing Decisions

Strategic Sourcing Outputs

Dase Study: Strategic Sourcing

Image by MIT OpenCourseWare.

Background

Sold product throughout US to variety of customers

- Direct to customers/distributors
- Through their own stores
- Through retailers

Wide variety of product

- 4,000 different SKU's
- 1500 different base products (could be labeled differently)
- Many low-volume products

Batch Manufacturing

 Manufacturing done in batch, so there significant economies of scale if a single product is made in one location

Mfg Capability

- Each plant had many different processes
- Many plants can produce the same problem

- Are products being made in the right location?
- Should plants produce a lot of products to serve the local market or should a plant produce a few products to minimize production costs?
- Should we close the high cost plant?
- How should we manage all the low volume SKU's?

Key Driver - Data Collection

Process Change

Built 2 Models

- 1. Model for all the base products
- 2. Model for low volume SKU's

Results

Savings

- Identified immediate low volume SKU moves
- Identified \$4-\$10M in savings for moving base products
- Identified negotiation opportunities for raw materials

Details

- Moved 20% more volume into the high cost plant
- 80% of savings were from 10% of the production moves

Implementation

- Implementation done in phases, starting with the easiest and highest value changes first
- Expect 3-5 months to complete analysis, another 3-6 months to implement
- Expect to adjust plans as you go forward

Baseline

- Product A: 20% of the volume, 45% of the variable cost
- Product B: 80% of the volume, 55% of the variable cost
- Optimization
 - Product A: 5% of the volume, 15% of the variable cost
 - Product B: 95% of the volume, 85% of the variable cost
- Net change was an increase in total volume

Case Study 3: Optimizing S&OP at PBG

PBG Structure - The PBG Territory

Image by MIT OpenCourseWare.

oPBG accounts for 58% of the domestic Pepsi Volume...the other 42% is ogenerated through a network of 96 Bottlers

oEach BUs act independently and meet local needs

- Problem: How should the firm source its products to minimize cost and maximize availability?
- Objective: Determine where products should be produced

Optimization Basics

oTradeoffs associated with optimizing a network...

Image by MIT OpenCourseWare.

© Copyright 2008 D. Simchi-Levi

Optimized Central BU model:

Total Cost

Category	Baseline		Optimized		Difference	% savings
MFG Cost	\$	2,610,361.00	\$	2,596,039.00	\$14,322.00	0.6%
Trans Cost	\$	934,920.00	\$	857,829.00	\$77,091.00	9.0%
Total Cost	\$	3,545,281.00	\$	3,453,868.00	\$91,413.00	2.6%

Production Breakdown

	Units Produced					
Plant	Baseline	Optimized	% change			
Burnsville	2,444,277.00	2,457,688.00	1%			
Howell	3,509,708.00	3,828,727.50	8%			
Detroit	2,637,253.00	2,304,822.50	-14%			

Multi Stage Approach

- Stage 1-2: 2005-6
 POC
 - 6 months
 - 2 Business Units
- Stage 3: 2007 Annual Operating Plan (AOP)
 - Model USA
 - Full year model
- Stage 4: Q1 Q4 2007
 - Quarter based model
 - Package / Category

Image by MIT OpenCourseWare.

Impact

- Creation of regular meetings bringing together Supply chain, Transport, Finance, Sales and Manufacturing functions to discuss sourcing and pre-build strategies
- Reduction in raw material and supplies inventory from \$201 to \$195 million
- A 2 percentage point decline in in growth of transport miles even as revenue grew
- An additional 12.3 million cases available to be sold due to reduction in warehouse out-of-stock levels

To put the last result in perspective, the reduction in warehouse out-of-stock levels effectively added one and a half production lines worth of capacity to the firm's supply chain without any capital expenditure.

Outline

The Need for DELS

DELS without capacity constraints:

- ZIO policy;
- Shortest path algorithm.

• DELS with capacity constraints:

- Capacity constrained production sequences;
- Shortest path algorithm.

Assumptions

- Finite horizon: T periods;
- Varying demands: d_t , t=1,...,T;
- Linear ordering cost: $K_t \delta(y_t) + c_t y_t$;
- Linear holding cost: h_t;
- \circ Inventory level at the end of period t.t $_{\star}$
- No shortage;
- Zero lead time;
- Sequence of Events: Review, Place Order, Order Arrives, Demand is Realized

Wagner-Whitin (W-W) Model

$$\min \sum_{t=1}^{T} [K_t \delta(y_t) + c_t y_t] + \sum_{t=1}^{T} h_t I_t \\ \text{s.t.} \quad I_t = I_{t-1} + y_t - d_t, t = 1, 2, \dots, T \\ I_0 = 0 \\ I_t, y_t \ge 0, t = 1, 2, \dots, T.$$

Zero Inventory Ordering Policy (ZIO)

• Any optimal policy is a ZIO policy, that is, $I_{t-1} \cdot y_t = 0$, for t=1,...,T.

Time independent costs: c, h.
Time dependent costs: c_t, h_t.

ZIO Policy \leftrightarrow Extreme Point

- Definition: Given a polyhedron P, A vector x is an extreme point if we cannot find two other vectors y, z in P, and a scalar λ ,0≤ λ ≤1, such that $x = \lambda y + (1-\lambda)z$.
- **Theorem:** Consider the linear programming problem of minimizing c'x over a polyhedron P, then either the optimal cost is equal to $-\infty$, or there exists **an extreme point** which **is optimal**.

Min-Cost Flow Problem

Implication of ZIO

 Each order covers exactly the demands of several consecutive periods.

 Order times sufficient to decide on order quantities.

Network Representation

$$l_{ij} = \begin{cases} K_i + c_i \sum_{t=i}^{j-1} d_t + \sum_{k=i}^{j-1} h_k \sum_{t=k}^{j-1} d_t, & 1 \le i < j \le T+1 \\ + \infty & o.w. \end{cases}$$

Shortest Path Algorithm

• Let V(i) be the cost-to-go starting from period *i* with zero initial inventory level. Then

$$V(i) = \min_{i < t \le T+1} l_{it} + V(t), i = 1, 2, \dots, T,$$

where $V(T + 1) = 0$

Complexity of the shortest path algorithm: O(T²).
With a sophisticated algorithm, O(T InT).

Outline

The Need for DELS

DELS without capacity constraints;

- ZIO policy;
- Shortest path algorithm.

DELS with capacity constraints;

- Capacity constrained production sequences;
- Shortest path algorithm.

DELS with Capacity Constraints

$$\min \sum_{t=1}^{T} [K_t \delta(y_t) + c_t y_t] + \sum_{t=1}^{T} h_t I_t$$

s.t. $I_t = I_{t-1} + y_t - d_t, t = 1, 2, ..., T$
 $I_0 = 0$
 $I_t, y_t \ge 0, t = 1, 2, ..., T,$
 $y_t \le C_t, t = 1, 2, ..., T.$

DELS model with capacity: description

Feasibility of DELS with capacity

For DELS model with capacity, a feasible solution exists if and only if

$$\sum_{j=1}^{i} C_j \ge \sum_{j=1}^{i} d_j, \text{ for } i = 1, 2, \dots, T.$$

Inventory Decomposition Property

Theorem Suppose that the constraint

 $I_k = 0$, for some $k \in \{1, ..., k - 1\}$

is added to DELS problem and

$$\sum_{j=k+1}^{i} C_j \ge \sum_{j=k+1}^{i} d_j, \text{ for } i = k+1, \dots, T.$$

holds. Then an optimal solution to the original problem can be found by independently finding solutions to te problems for the first k periods and for the last T - k periods.

Structure of Optimal Policy

Define a production sequence S_{ij} to be capacity constrained if the production level in at most one period k $(i + 1 \le k \le j)$ satisfies $0 < y_k < C_k$ and all other production levels are either zero or at their capacities.

Theorem There exists an optimal solution which consists of capacity constrained production sequences only.

Network Representation

 l_{ij} ?

Calculation of Link Costs

Time-dependent capacities: difficult;

- \circ Time-independent capacities: C_t=C.
- Let m and f such that $mC+f = d_{i+1} + ... +_j d_t$, where m is a nonnegative integer and $0 \le f < C$, define $Y_k = \sum_{t=i+1}^k y_t, i < k \le j$. then $Y_k \in \{0, f, C, C + f, 2C, ..., mC + f\}$.

Complexity: equal capacity

- Computing link cost l_{ii} : shortest path algorithm:O((j-i)²).
- Determining the optimal production sequence between all pairs of periods: $O(T^2) \times O(T^2) = O(T^4)$.
- Shortest path algorithm on the whole network : $O(T^2)$. Ο
- Complexity for finding an optimal_{so} lution for DELS Ο model with equal capacity: $O(T^4) + O(T^2) = O(T^4)$.
- With a sophisticated algorithm: $O(T^{3})$.
- Not applicable to problems with time-dependent capacity constraints, why? 39

• Effective with time-dependent capacity constraints.

• Not polynomial.

ZICO Policy

• **Theorem:** Any optimal policy is a ZICO policy, $I_{t-1} \cdot (C_t - y_t) \cdot y_t = 0$, for t=1,...,T.

• **Corollary:** If $(y_1, y_2, ..., y_T)$ represents an optimal solution, and $t = \max\{j: y_j > 0\}$, then

 $y_t = \min\{C_t, d_t + ... + d_T\}.$

ESD.273J / 1.270J Logistics and Supply Chain Management Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.