<u>Test Case Module</u>

<u>Field</u>	<u>Type</u>	<u>Req'd?</u>	<u>Inherit</u>	Description
Object_ID	Index	Auto	N/A	Prefix w/number assigned by DOORS
Test_Name	Text	Yes	No	Shorthand nomenclature for test case
Document	Test	Yes	Inherited	(From Suite)
Reference	Text	Yes	No	Paragraph reference within the governing document
Cookbook	Text	Yes	No	Specific procedural reference to cookbook paragraphs
Result_DVT	Enum/1	No	No	Value= Pass, Conditional Pass, Fail, N/A
Value_DVT	Text	No	No	Values, with units, of measured test results
Issue_DVT	Test	No	No	Description of conditional pass results or issues encountered in test conduct
Result_EVT	Enum/1	No	No	Value= Pass, Conditional Pass, Fail, N/A
Value_EVT	Text	No	No	Values, with units, of measured test results
Issue_EVT	Test	No	No	Description of conditional pass results or issues encountered in test conduct

Commercial Systems Engineering Process

Image by MIT OpenCourseWare.

Systems Engineering cycles iterated in each development phase

Key areas for impact

Requirements Analysis

Analyze Markets and Environments Identify Functional Requirements Define / Refine Performance and Design Constraint Requirements

- Requirements come from many stakeholder classes
- Upstream processes feed in business requirements
- As important as needs are constraints
- Don't forget 'nonfunctional' requirements
- QFD is a proven method to translate needs to requirements

QFD Quick Review & Functional Modeling Customer-Focused Design Map customer needs to functional descriptions

- Focus on "what" needs to be achieved not "how"
- Helps to organize teams, tasks and processes
- Enhances creativity by decomposing problems

 Interface specifications and protocols definition can begin prior to form design

"Rooms" in the House of Quality

34

Image by MIT OpenCourseWare.

Example Relationship Matrix

- Indicates a strong positive relationship
- ✓ Indicates a medium positive relationship
- X Indicates a strong negative relationship
- X Indicates a medium negative relationship

Note the objective measures of ECs

QFD Context

Image by MIT OpenCourseWare.

The Roof of the House

 ✓ Indicates a positive relationship

- X Indicates a negative relationship
- Is the roof matrix a function of the relationships matrix?
- Is it an Axiomatic Design matrix?
- Is it a Design Structure Matrix?

Image by MIT OpenCourseWare.

"Rooms" in the House of Quality

Image by MIT OpenCourseWare.

Figure from Lou Cohen.

Flow Down Requirements from the System House of Quality

What is the QFD for?

QFD is for

- Coordinating skills within an organization
 - Serves as a lingua franca
 - Helps break down the functional silos
 - Encourages real teamwork
- Designing goods that customers
 want to purchase
 - Creates external focus
 - Provides immersion in the specifications
- Target setting for mature products

QFD is NOT for

- Automatic decision making
 - "the house absolves no one of the responsibility of making tough decisions"
- Implementing a quick fix
 - "None of this is simple..."
 - "An elegant idea ultimately decays into process..."
 - "What is also not simple is creating an organization capable of absorbing elegant ideas"
- More difficult to use for highly novel / unprecedented functions

Hauser and Clausing, 1988, "The House of Quality", Harvard Business Review₄₀

Functional & Analytical Modeling

Functions

Functions should be expressed in terms of measurable effects

Typical function expression: active verb – noun

"increase pressure" "transfer torque" "store energy" "cool liquid"

Function Modeling Basics

<u>Product Function</u> – What the product does. A statement of the relationship between available input and desired output, independent of any particular form. (Overall Function)
 Make prints Tell time Water Turf Generate BHP Stop Vehicle

Chop	Transport	Accept
Beans	People	Human

NORMAL RUN SCENARIO

Image by MIT OpenCourseWare.

Functional Modeling Example: Power Nailer

45

Problem Decomposition: Function Diagram

Image by MIT OpenCourseWare.

Functional Modeling for CPM uses Conservative Law Based Metrics...

- **Energy:** ...measure the flow, transformation & state of energy (mechanical, magnetic, electrical, chemical, thermal, fluidic...)
- <u>Mass</u>: ...measure the dynamic or static state of the flow & transformation of mass (material deflection, elongation, volumetric or mass flow rates, liquid-to-gas, solid-to-liquid & solid-to-gas transformations...)
- Information: ...measure the flow & transformation of digital & analog electronic, mechanical, magnetic, photonic, etc. <u>signals</u> intended to control a function related to mass &/or energy transformation & flow.

Defining Critical Input/Output Parameters for Design Projects

1

Input-Output-Constraint (IOC[N]) Diagrams...

<u>Functional Flow Diagrams</u> can be created by linking I-O-C Diagrams

ь

Function Classes – Basic Functions

		Flow class			
Class	Basic	restricted	Synonyms		
Channel	Import		Input, Receive, Allow, Form Entrance,		
			Capture		
	Export		Discharge, Eject, Dispose, Remove		
	Transfer	Transport (M)	Lift, Move		
	Transier	Transmit (É)	Conduct, Convey		
		Translate	Direct, Straighten, Steer		
	Guide	Rotate	Turn, Spin		
	Ĩ	Allow DOF	Constrain, Unlock		
	Stop		Insulate, Protect, <i>Prevent</i> , Shield, Inhibit		
Current	Stabilize		Steady		
Support	Secure		Attach, Mount, Lock, Fasten, Hold		
	Position		Orient, Align, Locate		
Connect	Couple		Join, Assemble, <i>Attach</i>		
	Mix		Combine, Blend, Add, Pack, Coalesce		
	Separate		Switch, Divide, Release, Detach, Disconnect,		
	Separate		Disassemble, Subtract, Valve		
Branch		Remove (M)	Cut, Polish, Sand, Drill, Lathe		
Dianch	Refine		Purify, Strain, Filter, Percolate, Clear		
	Distribute		Diverge, Scatter, Disperse, <i>Diffuse</i> , Empty		
	Dissipate		Absorb, Dampen, Dispel, <i>Diffuse</i> , Resist		
	Store		Contain, Collect, Reserve, <i>Capture</i>		
Provision	Supply		Fill, Provide, Replenish, Expose		
	Extract				
	Actuate		Start, Initiate		
Control Magnitude	Regulate		Control, <i>Allow, Prevent</i> , Enable/Disable, Limit, Interrupt		
			Increase, Decrease, Amplify, Reduce,		
	Change		Magnify, Normalize, Multiply, Scale, Rectify,		
			Adjust		
	Form		Compact, Crush, Shape, Compress, Pierce		
Convert	Convert		Transform, Liquefy, Solidify, Evaporate,		
			Condense, Integrate, Differentiate, Process		
Signal	Sense		Perceive, Recognize, Discern, Check, Locate		
	Indicate		Mark		
	Display				
	Measure		Calculate		

Summary of System Analogs

From Lewis, "Modeling Engineering Systems"

System	Across Variable	Through Variable	Power Equation	Resistor Equation	Capacitor Equation	Inductor Equation
Electrical	Voltage (V)	Current (i)	Vi	V = Ri	$i = C \frac{dV}{dt}$	$V = L \frac{di}{dt}$
Mech. (Trans)	Velocity (v)	Force (F)	vF	$v = \frac{1}{b}F$	$F = m \frac{dv}{dt}$	$v = \frac{1}{k} \frac{dF}{dt}$
Mech. (Rotation)	Angular Velocity (w)	Torque (Q)	ωQ	$\omega = \frac{1}{B}Q$	$Q = I \frac{d\omega}{dt}$	
Fluidic	Pressure (p)	Flow Rate (q _v)	pq_v	$p = R_f q_v$	$q_v = C_f \frac{dp}{dt}$	$p = I_f \frac{dq_v}{dt}$
Thermal	Temperature (T)	Heat Flow Rate (q _h)	$q_{\scriptscriptstyle h}$	$T=R_tq_h$	$q_h = C_t \frac{dT}{dt}$	None

Function Structure

We show composition with area boundaries, not links. We show physics of the functions with flows, to initiate our development of the critical parameter trees. The flows can be measured.

Stresses in Systems Engineering

Simulation

MIT OpenCourseWare http://ocw.mit.edu

ESD.33 Systems Engineering Summer 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.