ESD.33 Systems Engineering Lecture 6 Requirements Driven Systems Design

Qi Van Eikema Hommes

#### **Course Layout**



b.

## Lecture Outline

- Introduction to Axiomatic Design
  - Four domains
  - Axiom 1—Independence Axiom
    - Design Matrix
    - Zigzagging
    - Constraints
  - Axiom 2—Information Axiom
- Design Structure Matrix for Technical Systems
- DM—DSM Method

#### The Founder of Axiomatic Design Theory

- Nam Pyo Suh—MIT Professor Emeritus.
- B.S., Mechanical Engineering, 1959, M.S., Mechanical Engineering, 1961, MIT
- Ph.D, Mechanical Engineering, 1964, Carnegie Mellon University.
- From 1965-1969, Suh served as a professor at the University of South Carolina. In 1970 he began his professional career at MIT-- serving as director of the MIT-Industry Polymer Processing Program from 1973-1984; director of the Laboratory for Manufacturing and Productivity from 1977-1984; and Mechanical Engineering Department Head from 1991 to 2001. Although still keeping the title of Ralph E. Cross Professor of Mechanical Engineering at MIT, Suh is now president of KAIST.

#### The Goals of Axiomatic Design

- Establish a scientific basis for design
- Improve design activities by providing the designer with a theoretical foundation based on logical and rational thought processes and tools.
- Make human designers more creative
- **Reduce** the random search process
- Minimize the iterative trial and error process
- Determine the best designs among those proposed

Suh, Axiomatic Design, 2000, page 5

#### **Definition of Design**

 Design is an interplay between what we want to achieve and how we will achieve it.



6/24/10

## The Four Domains of Design



Image by MIT OpenCourseWare.

## Definitions

- **Customer Attribute (CA)**—what customer desire from a product
- Functional Requirement (FR)—minimum set of independent requirements that completely characterize the functional needs of the product in the functional domain.
- **Design Parameter (DP)**—Key physical variables in the physical domain that characterize the design that satisfies the specified FRs.
- Process Variables (PV)—key variables in the process domain that characterize the process that can generate the specified DPs.

6/24/10

## **Benefits of the Domains**

- Customer Needs are stated in the customer's language
- Functional Requirements and Constraints are determined to satisfy Customer Needs
- "The FRs must be determined in a solution neutral environment" (or, in other words, say "what" not "how")
  - BAD = the adhesive should not peel
  - BETTER = the attachment should hold under the following loading conditions
- Provide Requirements Traceability

#### Lecture Outline

- Introduction to Axiomatic Design
  - ✓ Four domains
  - Axiom 1—Independence Axiom
    - Design Matrix
    - **Zigzagging**
  - Axiom 2—Information Axiom
- Design Structure Matrix for Technical Systems
- DM—DSM Method

### Axiom

- <u>Axioms</u> are truths that cannot be derived but for which there are no counter examples or exceptions.
- Examples of Axioms:
  - First and second law of thermodynamics
  - Newton's three law of mechanics

# How were the Design Axioms Created?

- Identifying the common elements that are present in all good designs:
  - How did I make such a big improvement in a process?
  - How did I create the process?
  - What are the common elements in good designs?
- Use logical reasoning process to reduce the observations to two Axioms.

#### The Two Axioms

- Axiom 1: Independence Axiom—maintain the independence of functional requirements (FRs).
- Axiom 2: The Information Axiom—minimize the information content of the design.

#### Design Matrix [A]



Image by MIT OpenCourseWare.

#### **Design Matrix**

 $\{FR\} = [A] \{DP\}$ 



#### Design Matrix Example

- FR1 = Provide access to the items stored in the refrigerator
- FR2 = Minimize energy loss
- DP1 = Vertically hung door
- DP2 = Thermal insulation material in the door

$$\begin{cases} FR1 \\ FR2 \end{cases} = \begin{cases} x & 0 \\ x & x \end{cases} \begin{bmatrix} DP1 \\ DP2 \end{bmatrix}$$



Image by MIT OpenCourseWare.

Suh, Axiomatic Design, 2000

Qi Van Eikema Hommes

# A Different Design

- FR1 = Provide access to the items stored in the refrigerator
- FR2 = Minimize energy loss
- DP1 = Horizontal door
- DP2 = Thermal insulation material in the door

$$\begin{cases} FR1 \\ FR2 \end{cases} = \begin{cases} x & 0 \\ 0 & x \end{cases} \begin{bmatrix} DP1 \\ DP2 \end{bmatrix}$$



Image by MIT OpenCourseWare.



#### Axiom 1: Independence Axiom

• To satisfy the Independence Axiom, the design matrix must be either diagonal or triangular.

$$\begin{bmatrix} A_{11} & 0 & 0 \\ 0 & A_{22} & 0 \\ 0 & 0 & A_{33} \end{bmatrix} \begin{bmatrix} A_{11} & 0 & 0 \\ A_{21} & A_{22} & 0 \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$$
Uncoupled Design Decoupled Design

#### Water Faucet Example

- Functional Requirements:
  - FR1: Adjust the water temperature (T)
  - FR2: Adjust the water volume (Q)

#### What is the Design Matrix?



Image by MIT OpenCourseWare.

Qi Van Eikema Hommes

#### What is the Design Matrix?



Image by MIT OpenCourseWare.

#### What is the Design Matrix?



Image by MIT OpenCourseWare.

Qi Van Eikema Hommes

# Functional Coupling vs Physical Coupling



#### # of parts $\neq$ # of DPs

Qi Van Eikema Hommes

# Why Meeting Axiom 1 is Desirable?

#### Lecture Outline

- Introduction to Axiomatic Design
  - ✓ Four domains
  - Axiom 1—Independence Axiom
    - ✓ Design Matrix
    - **D** Zigzagging
    - **Constraints**
  - Axiom 2—Information Axiom
- Design Structure Matrix for Technical Systems
- DM—DSM Method

### Zig Zagging



Image by MIT OpenCourseWare.

### **Refrigerator Design Example**

- FR1 = Freeze food for long-term preservation
- FR2 = Maintain food at cold temp for short-term preservation
- DP1 = the freezer section
- DP2 = the chiller (refrigerator) section

$$\begin{cases} FR1 \\ FR2 \end{cases} = \begin{cases} x & 0 \\ 0 & x \end{cases} \begin{cases} DP1 \\ DP2 \end{cases}$$



Image by MIT OpenCourseWare.

#### **Decompose the System**

#### FR1 = Freeze food for long term preservation

- FR11 = Control freezer temp
- FR12 = Maintain uniform freezer temp
- FR13 = Control freezer humidity
- FR2 = Maintain food at cold temp for short term preservation
  - FR21 = Control chiller temp
  - FR22 = Maintain uniform chiller temp
- DP1 = The freezer section
  - DP11 = Sensor/compressor system for freezer section
  - DP12 = Air circulation system for freezer section
  - DP13 = Condenser that condenses the moisture in the air when dew point is exceeded

#### DP1 = The chiller section

- DP21 = Sensor/compressor for chiller section
- DP22 = Air circulation system for chiller section

#### What Does The Design Matrix Look Like?



## **Design Matrix**

|     |      | DP1  |      |      | DP2  |      |
|-----|------|------|------|------|------|------|
|     |      | DP12 | DP11 | DP13 | DP22 | DP21 |
|     | FR12 | x    | 0    | 0    | 0    | 0    |
| FR1 | FR11 | x    | x    | 0    | 0    | 0    |
|     | FR13 | x    | 0    | x    | 0    | 0    |
| FR2 | FR22 | 0    | 0    | 0    | X    | 0    |
|     | FR21 | 0    | 0    | 0    | X    | x    |

#### Can We Save the Cost of a Fan?



Image by MIT OpenCourseWare.

|     |      | DP1  |      |      | DP2  |      |
|-----|------|------|------|------|------|------|
|     |      | DP12 | DP11 | DP13 | DP22 | DP21 |
| FR1 | FR12 | X    | 0    | 0    | X    | 0    |
|     | FR11 | x    | X    | 0    | X    | 0    |
|     | FR13 | X    | 0    | Х    | 0    | 0    |
| FR2 | FR22 | 0    | 0    | 0    | Х    | 0    |
|     | FR21 | X    | X    | 0    | х    | X    |

#### Coupled design!

Qi Van Eikema Hommes

#### Benefits So Far from Axiom 1

- Reduce system coupling early on.
- Start the design with requirements first.
- Think about the design concept first before applying robust engineering or optimization blindly.
- Zig-zagging instead of staying in one domain.
- Requirements traceability and rationale.

#### **Class Discussions**

- How does Zig-zagging help design synthesis?
- How does your organization decompose systems and requirements?
- Does this help with requirements traceability throughout the design?
- How does Axiomatic Design differ from QFD?

#### Lecture Outline

- Introduction to Axiomatic Design
  - ✓ Four domains
  - Axiom 1—Independence Axiom
    - ✓ Design Matrix
    - ✓ Zigzagging
    - Constraints
  - Axiom 2—Information Axiom
- Design Structure Matrix for Technical Systems
- DM—DSM Method
# **Constraints in Axiomatic Design**

• **Constrant (C)**—are bounds on acceptable solutions. *Input constraints* are imposed as part of the design specification. *System constraints* are constraints imposed by the system in which the design solution must function.

# Constraints

- Two types of constraints:
  - Input constraints—specific to the overall design goals (all design proposed must satisfy these).
    - Example: cost
  - System constraints—specific to a given design (they are the result of design decisions made).
    - Example: Diesel engine → tailpipe emission standards for diesel engines
- What kind of constraint is Safety?

# What Axiomatic Design Says about Constraints

 "Constraints provide bounds on the acceptable design solutions and differ from the FRs in that they do not have to be independent."

# Lecture Outline

- Introduction to Axiomatic Design
  - ✓ Four domains
  - ✓ Axiom 1—Independence Axiom
    - ✓ Design Matrix
    - ✓ Zigzagging
  - Axiom 2—Information Axiom
- Design Structure Matrix for Technical Systems
- DM—DSM Method

## Information Content

 Information Content I<sub>i</sub> for a given FR<sub>i</sub> is defined in terms of the probability P<sub>i</sub> of satisfying FR<sub>i</sub>:

 $I_i = \log_2(1/P_i) = -\log_2(P_i)$ 

• When there are m *FRs*,

$$I_{sys} = -\log_2(P_m) = -\sum_{i=1}^m \log_2 P_i$$



Image by MIT OpenCourseWare.

## **Axiom 2 Information Content**

- The Information Axiom—Minimize information content *I*.
- Maximize the probability of meeting FRs.

$$I_{sys} = -\log_2(P_m) = -\sum_{i=1}^m \log_2 P_i$$

# **Example of Buying a House**

Suh, Axiomatic Design, 2001

- FR1: Commute time 15 30 minutes
- FR2: Quality of School (65% or more highschool graduates go to colleges)
- FR3: Quality of air is good over 340 days a year
- FR4: price of house (4 BR, 3000 ft<sup>2</sup>, less than 650K)

| Town | FR1 =<br>commute<br>time (min) | FR2=Quality<br>of schools (%) | FR3=Quality<br>of air (days) | FR4=Price(\$) |
|------|--------------------------------|-------------------------------|------------------------------|---------------|
| А    | 20-40                          | 50-70                         | 300-320                      | 450-550k      |
| В    | 20-30                          | 50-75                         | 340-350                      | 450-650k      |
| С    | 25-45                          | 50-80                         | 350+                         | 600-800k      |

Qi Van Eikema Hommes

### **Information Content Calculation**

Suh, Aximatic Design, 2001

| Town | I <sub>1</sub> [bits] | l <sub>2</sub> [bits] | l <sub>3</sub> [bits] | l <sub>4</sub> [bits] | Sum (l)<br>[bits] |
|------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------|
| Α    | 1.0                   | 2                     | infinite              | 0                     | Infinite          |
| В    | 0                     | 1.32                  | 0                     | 0                     | 1.32              |
| С    | 2.0                   | 1.0                   | 0                     | 2                     | 5                 |



### $I_1 = -\log_2[(30-20) / (40-20)] = -\log_2(0.5) = 1$

Qi Van Eikema Hommes

b.

۰

## Axiom 2 and Robust Design

- "The Information Axiom provides a theoretical foundation for robust design."
  - Elimination of bias
  - Reduction of Variance
    - Reduce sensitivity to variation
    - Meeting the Independence Axiom
    - Minimize random variation
    - Increase design range
  - Integrate DP in a single physical part

Comparison of Axiomatic Design with Other Methods (SUM, 2001)

- Robust design cannot be accomplished by applying the Taguchi method if the design violates the Independence Axiom.
- Optimization of a bad design may lead to an optimized bad design or minor improvements.
- How is Axiomatic Design similar/different from QFD?

### Questions about the Axioms

- Too good to be true? What about constraints?
- Are interactions so bad? That's what makes a system great!
  - Definition of System--A combination of <u>interacting</u> <u>elements</u> organized to achieve one more stated purposes.

# Lecture Outline

- ✓ Introduction to Axiomatic Design
  - ✓ Four domains
  - ✓ Axiom 1—Independence Axiom
    - ✓ Design Matrix
    - ✓ Zigzagging
    - ✓ Constraints
  - ✓ Axiom 2—Information Axiom
- Design Structure Matrix for Technical Systems
- DM—DSM Method

### Matrix Representation of a Network --The Design Structure Matrix (DSM)



Image by MIT OpenCourseWare.

### Partitioning a DSM

#### **Before Partition**

#### After Partition



Image by MIT OpenCourseWare.

### Partitioning identifies truly coupled elements.

Qi Van Eikema Hommes

# Car Door System Design



Image by MIT OpenCourseWare.

# Car Door System Engineering Process (Before Partitioning DSM)

| Spatial Function   Appearance   Sheet Metal   Electrical System   Moveable Glass System   Outer Panel Shape   Pillars (sections)                                   | Outer Panel Shape     Outer Panel Shape     Pillars (sections)     Pillars (sections)     Panel     Panel | Belt Opening<br>Halo Corners (upper)<br>Inner Panel Material at<br>Regulator<br>Inner Panel Shape at<br>Regulator<br>Access Hole Geometry<br>Access Hole Geometry<br>Sharp Edges on the Sheet<br>Metal<br>Belt Seals Joint with Sail<br>Panel | Belt Seals Show Surface<br>Glass Runs<br>Glass<br>Below Belt Retainer<br>The joint of Glass Runs and<br>Header Seals | Header Seals<br>Belt Seals Lips and Flange<br>Belt Seals Joint with Glass<br>Runs<br>Regulator arms<br>Equilizer Channel<br>Motor physical features | Motor Electrical Faature<br>Power Supply<br>Connector between the<br>motor and hamess<br>Electrical: ckt. Design<br>Current Drawn to the Motor | Switch Current Capacity<br>Wira Size<br>Wire Route<br>The Position of Wire<br>Fasteners<br>Wire Length |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Sheet Metal Subsystem                                                                                                                                              |                                                                                                           | 8A<br>A                                                                                                                                                                                                                                       |                                                                                                                      | -A<br>-A                                                                                                                                            | 0=                                                                                                                                             |                                                                                                        |
| Access hole Geometry<br>Sharp Edges on the Sheet Metal<br>Belt Seals Joint with Sail Panel<br>Belt Seals Show Surface<br>Glass Runs<br>Moveable Glass<br>Subsystem | A A BA C-<br>                                                                                             | 50+ pe<br>interfac<br>meetin                                                                                                                                                                                                                  | ce eng                                                                                                               | -                                                                                                                                                   | g                                                                                                                                              |                                                                                                        |
| Equilizer Channel<br>Motor Physical features<br>Motor Electrical Feature<br>Power Supply<br>Connector between the                                                  |                                                                                                           | C- C-<br>B- B-                                                                                                                                                                                                                                | -A -A -C                                                                                                             | -A -B -B                                                                                                                                            | -A-<br>-A-<br>-A-                                                                                                                              | B/0                                                                                                    |
| Electrical<br>Subsystem                                                                                                                                            | A                                                                                                         | A- A- A-<br>A- A- A-<br>A- C-<br>                                                                                                                                                                                                             | - A<br>                                                                                                              | 8-<br>-<br>-                                                                                                                                        |                                                                                                                                                |                                                                                                        |

### Car Door System Engineering Process (After Partitioning)

| Spatial Function<br>Appearance<br><sup>Sheet Metal</sup>               | ply          | Outer Panel Shape | Belt Seals Show<br>Surface | der cross-                 | Pillars (sections) |            | ing<br>Joint with              | Sail Panel | ers (upper)       | 2                   | Below Belt Retainer | The joint of Glass Runs | er Seals | Header Seals<br>Belt Seals Lips and | Inint with | beit seals Joirtt With<br>Glass Runs | <mark>nner Panel Material at</mark><br>Regulator | arms           | Equilizer Channel | Inner Panel Shape at<br>Regulator | Access Hole Geometry | Connector between the | Electrica; ckt. Design | Motor physical features | Current Drawn to the<br>Motor | Motor Electrical Feature | irrent                     | Sharp Edges on the<br>Sheet Metal |           | Wire Route<br>The Position of Wire<br>Fasteners | Ŧ           |
|------------------------------------------------------------------------|--------------|-------------------|----------------------------|----------------------------|--------------------|------------|--------------------------------|------------|-------------------|---------------------|---------------------|-------------------------|----------|-------------------------------------|------------|--------------------------------------|--------------------------------------------------|----------------|-------------------|-----------------------------------|----------------------|-----------------------|------------------------|-------------------------|-------------------------------|--------------------------|----------------------------|-----------------------------------|-----------|-------------------------------------------------|-------------|
| Electrical System                                                      | Power Supply | er Pan            | Seals<br>ace               | Halo (header o<br>section) | Irs (se            | Sail Panel | Belt Opening<br>Belt Seals Joi | Panel      | Halo Corners      | Glass Kuns<br>Glass | w Bel               | joint o                 | Head     | Header Seals<br>Belt Seals Lip      | Seals      | sears                                | Inner Pane<br>Regulator                          | Regulator arms | ilizer (          | Inner Pane<br>Regulator           | ess Ho               | necto                 | trica;                 | or phv                  |                               | or Elec                  | Switch Current<br>Capacity | rp Edg<br>et Met                  | Wire Size | Wire Route<br>The Positio<br>Fasteners          | Wire Length |
| Moveable Glass System                                                  | Pow          | ð                 | Belt                       | Hald<br>sect               | Pilla              | Sail       | Belt<br>Belt                   | Sail       | Halo              | Glass               | Bel                 | The                     | and      | Belt<br>Belt                        | Ret<br>Ret | Glas                                 | Inne<br>Reg                                      | Reg            | Equ               | Inne<br>Red                       | Acc                  | Con                   | Elec                   | Mot                     | Currer<br>Motor               | Mot                      | Swi<br>Cap                 | Sha<br>She                        | Wire      | Wire<br>The<br>Fast                             | Wire        |
| Power Supply                                                           | _            |                   | A                          | -                          |                    | 0 0        |                                |            |                   | C -                 |                     |                         |          | _                                   | _          |                                      |                                                  |                |                   |                                   | _                    |                       |                        |                         |                               |                          |                            |                                   |           |                                                 |             |
| Outer Panel Shape                                                      | _            | A                 | c                          | _                          |                    |            |                                |            |                   | ċ                   | _                   |                         |          |                                     |            |                                      |                                                  |                |                   |                                   |                      |                       |                        |                         |                               |                          |                            |                                   |           |                                                 |             |
| Belt Seals Show Surface                                                |              | с<br>В            |                            |                            | _                  | C          |                                |            |                   |                     |                     |                         |          | R۵                                  | 1+         | . a                                  | $\mathbf{n}$                                     | 1 /            | 1                 | hc                                | 17                   | Δ.                    | Re                     | <u>1</u> +              | Fr                            | on                       | ne                         |                                   |           |                                                 |             |
| Halo (header cross-section)                                            |              |                   |                            | 0                          |                    |            |                                |            |                   |                     |                     |                         |          | DC                                  | π          | . a                                  | ш                                                | 1 [            | 71                |                                   | <b>,</b> ,           | U.                    | D                      | -π                      | T.T                           | an                       |                            |                                   |           |                                                 |             |
| Pillars (sections)                                                     |              |                   |                            | A<br>                      |                    |            |                                |            |                   |                     |                     |                         |          |                                     |            |                                      |                                                  |                |                   |                                   |                      |                       |                        |                         |                               |                          |                            |                                   |           |                                                 |             |
| Sail Panel                                                             |              |                   |                            |                            | A<br>              |            | 3 BA<br>- A                    | <b>`</b>   |                   |                     |                     |                         |          |                                     |            |                                      |                                                  |                |                   |                                   |                      |                       |                        |                         |                               |                          |                            |                                   |           |                                                 |             |
| Belt Opening                                                           |              |                   |                            |                            | A<br>              | A<br>      |                                |            |                   |                     | C/O<br>             |                         |          |                                     |            |                                      |                                                  |                |                   |                                   |                      |                       |                        |                         |                               |                          |                            |                                   |           |                                                 |             |
| Belt Seals Joint with Sail Panel                                       |              |                   |                            |                            |                    | A<br>A     |                                |            |                   |                     |                     |                         |          |                                     |            |                                      |                                                  |                |                   |                                   |                      |                       |                        |                         |                               |                          |                            |                                   |           |                                                 |             |
| Halo Corners (upper)                                                   |              |                   |                            | A<br>                      | A<br>              |            |                                |            |                   |                     |                     | C<br>C                  |          |                                     |            |                                      |                                                  |                |                   |                                   |                      |                       |                        |                         |                               |                          |                            |                                   |           |                                                 |             |
| Glass Runs                                                             |              |                   |                            | A                          |                    | ВА         |                                |            |                   | A -                 | B                   | A<br>C                  |          |                                     | 0<br>C     |                                      |                                                  |                |                   |                                   |                      |                       |                        |                         |                               |                          |                            |                                   |           |                                                 |             |
| Glass                                                                  |              | в                 |                            |                            |                    |            |                                |            | A                 | A                   | A                   |                         |          | C A                                 | Ť          |                                      |                                                  | C              | 11                | nc                                | C                    | 01                    | h                      | T                       | rac                           | 1-                       |                            |                                   |           |                                                 |             |
| Below Belt Retainer<br>The Joint of the Glass Runs and Header<br>Seals |              |                   |                            |                            | A<br>              | -          | 4<br>-                         |            | B<br><br>A A<br>A |                     |                     |                         | A        |                                     |            |                                      |                                                  | C              | 110               | as                                | 2                    | a                     | IU                     | 11                      | lac                           | <b>^N</b>                |                            |                                   |           |                                                 |             |
| Header Seals                                                           |              |                   |                            | A<br>                      |                    |            |                                |            |                   | /                   |                     | A<br>C                  |          |                                     |            |                                      |                                                  |                |                   |                                   |                      |                       |                        |                         |                               |                          |                            |                                   |           |                                                 |             |
| Belt Seals Lips and Flange                                             |              |                   | A<br>                      |                            |                    |            | ۹<br>-                         |            |                   | A -                 |                     |                         |          |                                     | c          |                                      |                                                  |                |                   |                                   |                      |                       |                        |                         |                               |                          |                            |                                   |           |                                                 |             |
| Belt Seals Joint with Glass Runs                                       |              |                   |                            |                            |                    |            |                                |            | AB                |                     |                     |                         |          | <br>B                               |            |                                      |                                                  |                |                   |                                   |                      |                       |                        |                         |                               |                          |                            |                                   |           |                                                 |             |
| Inner Panel Material at Regulator                                      |              |                   |                            |                            |                    |            |                                |            |                   |                     |                     |                         |          |                                     |            |                                      |                                                  |                | - A<br>-          |                                   |                      |                       |                        |                         |                               |                          |                            |                                   |           |                                                 |             |
| Regulator arms                                                         |              | A                 |                            |                            |                    |            |                                |            |                   | /                   | 4                   |                         |          | BB                                  |            |                                      |                                                  |                |                   | C                                 | A                    |                       |                        |                         |                               | C/O                      |                            |                                   |           |                                                 |             |
| Equilizer Channel                                                      |              |                   |                            |                            |                    |            |                                |            |                   |                     |                     |                         |          | _                                   |            |                                      | AA                                               | AA             |                   | C                                 | A                    |                       |                        |                         | _                             |                          |                            |                                   |           |                                                 |             |
| Inner Panel Shape at Regulator                                         |              |                   |                            |                            |                    |            |                                |            |                   |                     |                     |                         |          |                                     |            |                                      | C                                                | AA             | вс                |                                   | AB                   | 0                     |                        |                         |                               |                          |                            |                                   |           | C/O                                             |             |
| Access Hole Geometry                                                   |              | -                 |                            |                            |                    |            |                                | -          |                   | -                   | C                   |                         |          |                                     |            |                                      |                                                  | A              | -                 | A                                 | -                    | -                     | -                      | A                       | _                             |                          |                            | 1                                 |           |                                                 |             |
| Connector between the<br>Motor and the Harness                         | A            |                   |                            |                            |                    |            |                                |            |                   |                     |                     |                         |          |                                     |            |                                      |                                                  |                |                   | в                                 | B                    |                       |                        |                         | A<br><br>A                    |                          |                            |                                   | -         | B/O<br>-                                        |             |
| Electric ckt. Design                                                   | ^            |                   |                            |                            | 1                  | D.         |                                |            |                   |                     | 1                   | 1                       |          | +                                   |            |                                      |                                                  |                |                   |                                   |                      | вв                    |                        |                         | ^                             |                          |                            |                                   |           |                                                 |             |
| Motor Physical features                                                |              |                   |                            |                            |                    | Γ(         | JW                             | $e^{2}$    | Ľċ                | 1 <b>N</b>          | la                  | IV.                     | 10       | otic                                | JU         |                                      |                                                  |                |                   |                                   |                      |                       |                        |                         |                               | B<br>                    |                            |                                   |           |                                                 |             |
| Current Drawn to the Motor                                             | A<br>        |                   |                            |                            |                    |            |                                |            |                   |                     |                     |                         |          |                                     |            |                                      |                                                  |                |                   |                                   |                      | C<br>                 | A<br>                  |                         |                               | A<br>                    | B<br>                      |                                   |           |                                                 |             |
| Motor Electrical Feature                                               | A<br>        | ·                 |                            |                            |                    |            |                                |            |                   |                     |                     |                         |          |                                     |            |                                      |                                                  |                |                   |                                   |                      |                       | A<br>                  | B<br>                   | A<br>                         |                          |                            |                                   |           |                                                 |             |
| Switch Current Capacity                                                |              |                   |                            |                            |                    |            |                                |            |                   |                     |                     |                         |          |                                     |            |                                      |                                                  |                |                   |                                   |                      |                       |                        |                         | A<br>                         |                          |                            |                                   |           |                                                 |             |
| Sharp Edges on the Sheet Metal                                         |              |                   |                            |                            |                    |            |                                |            |                   | C -                 | B<br>               |                         |          |                                     |            |                                      |                                                  | B<br>          |                   | A<br>                             |                      |                       |                        |                         |                               |                          |                            |                                   |           |                                                 |             |
| Wire Size                                                              |              |                   |                            |                            |                    |            |                                |            |                   |                     |                     |                         |          |                                     |            |                                      |                                                  |                |                   |                                   |                      |                       |                        |                         | A<br>                         |                          |                            |                                   |           |                                                 |             |
| Wire Route                                                             |              |                   |                            |                            |                    | A          |                                |            |                   | В-                  | A                   |                         |          |                                     |            |                                      |                                                  | В              |                   | A                                 | A                    | BВ                    | BA                     |                         |                               |                          |                            | A                                 | A         | A                                               |             |
| The Position of Wire Fasteners                                         |              |                   |                            |                            |                    | B          |                                |            |                   |                     | A                   |                         |          | Г                                   | 11         | 20                                   | +                                                | ~              | 1                 | р                                 |                      | -1-                   | 00                     |                         |                               |                          |                            |                                   |           | а,<br>-                                         |             |
| Wire Length                                                            |              | -                 |                            |                            | +                  |            |                                |            |                   | -                   |                     |                         |          | E                                   | 16         | 3C                                   | ur1                                              | Ca             | 11                | Γ                                 | a                    | ĴΚ                    | ag                     | ļII                     | Ig_                           |                          |                            |                                   |           | 3                                               |             |
| THE CONSTR                                                             |              |                   |                            |                            |                    |            |                                |            |                   |                     |                     |                         |          |                                     |            |                                      |                                                  |                |                   |                                   |                      |                       |                        |                         |                               |                          |                            |                                   |           |                                                 |             |

### The Control Software System



- What can I do about this web of interactions?
- How can I convince management that changes are needed?
- How do I know I actually improved the architecture?

#### DSM of the Control System Software



#### **Comparison of Various Modularity Metrics**

|                                                                           |    |    |     |         |            | Clos    | seness Moo | lularity    |             |
|---------------------------------------------------------------------------|----|----|-----|---------|------------|---------|------------|-------------|-------------|
|                                                                           |    |    |     |         | Degree     | Freeman | Reach      | Eigenvector | Betweenness |
| Comparison Criteria                                                       | WI | CC | SMI | VD plot | Modularity | Farness | Centrality | Centrality  | Modularity  |
| Capable of producing a consistent modularity index for the overall system | +  | +  |     |         |            |         |            |             |             |
| Capable of assessing the<br>density of immediate<br>interactions          | +  |    |     |         |            |         |            |             |             |
| Capable of assessing the propagation of interactions                      |    | +  |     |         |            |         |            |             |             |
| Identifies key elements in the system for modularity concerns             |    |    |     |         | +          | +       | +          | +           | +           |
| Simple to compute.                                                        | +  | +  | +   | +       |            |         |            |             |             |

Use Whitney Index and Change Cost to measure modularity improvements. Use network centrality indices to identify system elements for improvement.

#### Whitney Index Comparison



### **Change Cost Comparison**



### Network Centrality—Degree Centrality

(Sosa, Eppinger, Rowles 2007, Borgatti, Everett, and Freeman, 2002, UCINET)

In degree—how many others pass information to the element of interest.

Out degree—how many others depend on the element of interest for information.

Degree Centrality identifies which few elements, if any, in the system have a central effect on the rest of the systems.

However, the metrics values don't correlate well with components modularity.



Image by MIT OpenCourseWare.

# Network Centrality

(Sosa, Eppinger, Rowles 2007, Borgatti, Everett, and Freeman, 2002, UCINET)

- Network centrality metrics can identify the few elements that have the largest impact on the system.
- If the network has central players, the network may be bus-modular.
- If the network does not have central player, the network system is either not connected, or highly integral.
- Central players can be the priority for system complexity reduction strategy.

### **DSM Method**

- Capture system interactions
- Analyze and improve system architecture and system interfaces.

# Lecture Outline

- ✓ Introduction to Axiomatic Design
  - ✓ Four domains
  - ✓ Axiom 1—Independence Axiom
    - ✓ Design Matrix
    - ✓ Zigzagging
    - ✓ Constraints
  - ✓ Axiom 2—Information Axiom
- Design Structure Matrix for Technical Systems
- DM—DSM Method

# Existing Methods Concerning System

### Interactions

|                                                          | Design<br>Structu<br>re<br>Matrix<br>(DSM) | Axiomatic<br>Design's<br>Design<br>Matrix<br>(DM) | Requireme<br>nts<br>Manageme<br>nt | What<br>We<br>Want |
|----------------------------------------------------------|--------------------------------------------|---------------------------------------------------|------------------------------------|--------------------|
| Provide analytical system analysis                       | Yes                                        |                                                   |                                    | Yes                |
| Allow iterations and feedback loops                      | Yes                                        |                                                   |                                    | Yes                |
| Relate the<br>requirements to the<br>system design       |                                            | Yes                                               |                                    | Yes                |
| Can be applied in the early design phases                |                                            | Yes                                               | Yes                                | Yes                |
| Provide complete<br>understanding of all<br>requirements |                                            |                                                   | Yes                                | Yes                |

## Solving System of Linear Equations

Question: 
$$3 * x1 + 5 * x2 = 6$$
 (1)  
 $2 * x1 - x2 = 4$  (2)

What is x1 and x2?

### Solving by substitution:

Select x1 as the <u>output variable</u> in (1): x1 = (6 - 5 \* x2) / 3Select x2 as the <u>output variable</u> in (2): x2 = 2 \* x1 - 4 = 2 \* (6-5\*x2)/3 - 4x1=2 x2=0



## Converting a DM into a DSM

- 1. Construct an Axiomatic Design's Design Matrix.
- 2. Select Output Variables. DP3 = f (FR1, DP1) DP1 = f (FR2, DP2)DP2 = f (FR3, DP3)
- Permute the matrix by row so that the output variables are on the diagonal. We get a precedence matrix (DSM) of the Design Parameters.

|     | DP1 | DP2 | DP3 |
|-----|-----|-----|-----|
| FR1 | Х   | 0   | Х   |
| FR2 | Х   | Х   | 0   |
| FR3 | 0   | Х   | Х   |





### **Selecting Output Variables**



|     | DP1 | DP2 | DP3 | DP4 |  |
|-----|-----|-----|-----|-----|--|
| FR1 | Х   |     |     |     |  |
| FR2 | Х   | Х   |     | Х   |  |
| FR3 |     | Х   | Х   |     |  |
| FR4 |     |     | Х   | Х   |  |

|     | DP1 | DP2 | DP3 | DP4 |
|-----|-----|-----|-----|-----|
| DP1 | Х   |     |     |     |
| DP2 |     | Х   | Х   |     |
| DP3 |     |     | Х   | Х   |
| DP4 | Х   | Х   |     | Х   |



### **CVC Cluster Machines**



Central Wafer Handler

Wafer Processing Module

Qi Van Eikema Hommes

Courtesy of KDF electronics. Used with permission.

### CVC Electro-static Chuck (ESC)



**Process Chamber** 

Wafer

Backside gas channel

Electro-statically charged plate

**Cooling Plate** 

ESC

Plate for interface with various process modules

Standard interface on all process modules

Backside Gas, Cooling Water, 6/24/10 Electricity

Qi Van Eikema Hommes

### System View of ESC



6/24/10

# Design Structure Matrix Built from Design Matrix

|                                                                                             |          | 3.12.1                   | 3.13              | 3111                             |                                              | 27<br>28<br>323112 | 323113<br>323114<br>51<br>51<br>123<br>123 | 20<br>223115<br>223122<br>2333<br>233<br>233<br>233<br>233<br>233<br>233<br>233 |
|---------------------------------------------------------------------------------------------|----------|--------------------------|-------------------|----------------------------------|----------------------------------------------|--------------------|--------------------------------------------|---------------------------------------------------------------------------------|
|                                                                                             |          | 2.9<br>3.1<br>3.2<br>3.2 |                   | 52 24 25 20 23<br>52 24 25 20 23 | 1111<br>1112<br>1113<br>1113<br>1113<br>1113 |                    |                                            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                           |
|                                                                                             | oper     | 14 19 22 31 30           | 37 42 44 40 47 31 | 92 24 29 20 23                   | 29 40 1 2 3                                  | 4 5 1/ 10 20       | 27 20 30 43 45 0 1                         |                                                                                 |
| 2.4 Cleanness of the chuck and the wafer                                                    | ation 14 | 1                        |                   |                                  |                                              |                    |                                            |                                                                                 |
| 2.9 three-piece chuck electrodes                                                            | 1 19     | 1                        |                   |                                  |                                              |                    |                                            |                                                                                 |
| 3.1 Process Recipe design                                                                   | 5.6 22   | 1                        |                   |                                  |                                              |                    | af a r                                     |                                                                                 |
| 3.2.3.1.2.1 BSG outlet ISO valve                                                            | 3 31     | 101                      |                   |                                  | nea                                          | t Tran             | sier                                       |                                                                                 |
| 3.2.3.1.2.6 BSG Gas box                                                                     | 3 36     |                          |                   |                                  |                                              |                    | 0.0.                                       |                                                                                 |
| 3.2.3.1.3 BSG chamber-bypass ISO valve<br>4 matching network                                | 3 37     |                          |                   |                                  |                                              |                    |                                            |                                                                                 |
| 5.2 retaining ring and screw                                                                | 3(s) 44  | + + + + +                | 100               |                                  |                                              |                    |                                            |                                                                                 |
| 7.1.1 chuck shaft (standard)                                                                | 3(\$) 46 | ++++                     |                   |                                  |                                              |                    |                                            | Packaging into the                                                              |
| 7.1.2 chuck shaft (standard)<br>7.1.2 chuck shaft inner diameter (standard)                 | 3(s) 47  |                          |                   |                                  |                                              |                    |                                            |                                                                                 |
| 8 wafer loading robot arm and its motion path                                               | 3(s) 51  |                          | 1                 |                                  |                                              |                    |                                            |                                                                                 |
| 9 chuck body (36)                                                                           | 3(s) 52  |                          |                   | 1                                |                                              |                    |                                            |                                                                                 |
| 3.2.2 BSG substance selection                                                               | 5 24     | 1                        |                   | 1 1 5                            | F                                            |                    |                                            | Modules                                                                         |
| 3.2.3.1.1.1 BSG inlet flow rate                                                             | 5 25     | 1                        |                   | 1 1 F                            | F                                            |                    |                                            | modulos                                                                         |
| 2.10 chuck pedestal and cooling plate size                                                  | 1 20     |                          |                   | 1                                |                                              |                    | P                                          |                                                                                 |
| 3.2.1 BSG channel design                                                                    | 1 23     | 1                        |                   | F F 1 1 F                        | F                                            |                    |                                            |                                                                                 |
| 3.3.1 cooling plate material                                                                | 1.5 39   | 1                        |                   | F                                | 1 1                                          |                    |                                            |                                                                                 |
| 3.3.2 chuck cooling water system design                                                     | 1,5 40   | 1 1                      | 1                 | E E E                            | 1 1                                          |                    | P                                          |                                                                                 |
| 1.1.1 center cutout of the wafer trasfer plate                                              | 3 1      |                          |                   | P                                | 1 1 1                                        |                    |                                            |                                                                                 |
| 1.1.2 wafer transfer plate shaft bushings                                                   | 3 2      |                          |                   | P                                | 1 1 1                                        | 1 1                | 1                                          |                                                                                 |
| 1.1.3 wafer transfer plate center cutout lips                                               | 3 3      |                          |                   | F,P                              | - 1                                          | 1 1                |                                            |                                                                                 |
| .2.1 wafer transfer plate radial cutout                                                     | 3 4      |                          | 1                 | P                                |                                              | 1                  |                                            |                                                                                 |
| standoff and wafer transfer plate pin (standar                                              | d        |                          |                   |                                  |                                              |                    |                                            |                                                                                 |
| 2.2 location)                                                                               | 3 5      |                          |                   |                                  | 1 1                                          | 1 1                |                                            |                                                                                 |
| chuck and wafer insulator center ring and O-                                                |          |                          |                   |                                  |                                              |                    |                                            |                                                                                 |
| 2.7 ring                                                                                    | 3 17     |                          | 1                 | 1 F                              |                                              | 1 1 1              | 1                                          |                                                                                 |
| 2.8 wafer insulator (2)                                                                     | 3 18     |                          |                   | F                                |                                              | 1 1 1              | 1                                          |                                                                                 |
| 3.2.3.1.1.2 BSG inlet flow ISO valve<br>3.2.3.1.1.3 BSG inlet flow MFC                      | 3 26     |                          |                   | F                                |                                              |                    |                                            |                                                                                 |
| 3.2.3.1.1.4 BSG inlet manometer                                                             | 3 28     |                          |                   | E                                |                                              |                    |                                            |                                                                                 |
| 3.2.3.2 BSG gas flow tubes                                                                  | 3 38     |                          | 1                 | FF                               | P                                            | 1                  | 1 1 1                                      | Control Circuit                                                                 |
| 5.1 metal seal and O-ring                                                                   | 3(s) 43  |                          |                   | 1 P                              |                                              | 1                  | 1 1                                        |                                                                                 |
| 6 chuck adapter plate                                                                       | 3(s) 45  |                          | 1                 | 1 P                              |                                              | 1 1                | 1 1                                        |                                                                                 |
| 1.2.3 wafer transfer plate height from the ground                                           | 3 6      |                          | 1                 |                                  |                                              |                    | 1                                          |                                                                                 |
| 2.6 clamping time                                                                           | 5 16     | 1                        |                   |                                  |                                              |                    |                                            |                                                                                 |
| 2.11 chuck pedestal height at rest                                                          | 3 21     |                          | 1                 |                                  |                                              | 1                  | 1                                          |                                                                                 |
| circuit design to incorporate the inlet valve                                               | 1000     |                          |                   |                                  |                                              |                    |                                            |                                                                                 |
| 2.3.1.1.5 control                                                                           | 4 29     |                          | 1                 |                                  |                                              | 1                  | 1 1                                        |                                                                                 |
| 2.3.1.2.2 BSG outlet pump                                                                   | 3 32     | 1                        |                   | 1 1 1                            |                                              |                    |                                            |                                                                                 |
| 3.3 water filter box                                                                        | 3 41     |                          |                   |                                  | 1                                            |                    |                                            |                                                                                 |
| 2.1 circuit to reverse the polarity                                                         | 4 7      |                          |                   |                                  |                                              |                    |                                            | 1 IF                                                                            |
| 2.2 ESC chuck material and dielectric constant                                              | 1 8      |                          |                   |                                  |                                              |                    |                                            |                                                                                 |
| 3.1 circuit voltage<br>3.2 Chuck dielectric layer thickness                                 | 1 9      | 1                        |                   | 1                                |                                              |                    |                                            |                                                                                 |
| 3.2 Chuck dielectric layer thickness<br>3.3 Electric circuit design for the voltage control | 1 10     |                          |                   | ++++                             | + + + + +                                    |                    |                                            |                                                                                 |
| 3.5 DC choke circuit                                                                        | 1 13     |                          |                   |                                  |                                              |                    |                                            |                                                                                 |
| 2.5 wafer clamping sensor                                                                   | 1 15     |                          |                   |                                  |                                              |                    |                                            |                                                                                 |
| 2.3.1.2.3 BSG outlet manometer                                                              | 3 33     |                          |                   |                                  |                                              |                    |                                            |                                                                                 |
| 7.2 chuck belows                                                                            | 3(s) 48  |                          |                   |                                  |                                              |                    |                                            |                                                                                 |
| 3.4 software to control the voltage                                                         | 2 12     | 1                        |                   |                                  |                                              |                    |                                            |                                                                                 |
| circuit design to incorporate BSG outlet valve                                              |          |                          |                   |                                  |                                              |                    |                                            |                                                                                 |
| 3.2.3.1.2.4 control                                                                         | 4 34     | 1                        |                   |                                  |                                              |                    |                                            |                                                                                 |
| 7.3 electronics to move the shaft                                                           | 4(s) 49  |                          |                   |                                  |                                              |                    |                                            |                                                                                 |
| 7.4 chuck motion control software                                                           | 2 50     |                          |                   |                                  |                                              |                    |                                            | 1 1 1                                                                           |
| 3.2.3 1.2.5 BSG inlet outlet flow control software                                          | 2 35     | 1                        |                   |                                  |                                              | 1                  |                                            |                                                                                 |
| 2.3.1.1.6 software to control the BSG pressure                                              | 2 30     | 1                        | 1                 |                                  |                                              |                    | 1 1                                        |                                                                                 |

Qi Van Eikema Hommes

### The Selection of Output Variables

Choosing non-diagonal elements in the DM as output variable set is like designing components not for their main functional purposes, but for their side effects. The resulting DSM is a non-executable design process.

# The Selection of Output Variables



 $\Delta DP1 = 1/0.75 * ! FR1 - 0.2/0.75* \Delta DP2$  $\Delta DP2 = 1/0.9 * ! FR2 - 0.2/0.9 * \Delta DP1$ 

| •            | ΔDP1    | ∆DP2     |
|--------------|---------|----------|
| $\Delta DP1$ | 0       | 0.2/0.75 |
| ΔDP2         | 0.2/0.9 | 0        |

Eigen Value = 0.243 This process converges.



∆DP1 = 1/0.2 \* ! FR1 Ð 0.75/0.2\* ∆DP2 ∆DP2 = 1/0.2 \* ! FR2 - 0.9/0.2\* ∆DP1

|              | ΔDP1    | ΔDP2     |
|--------------|---------|----------|
| $\Delta DP1$ | 0       | 0.75/0.2 |
| $\Delta DP2$ | 0.9/0.2 | 0        |

Eigen Value = 4.1 This process does NOT converge.
#### The Interchangeability of DM and DSM



# The diagonal elements in the DM are the dominant elements in their corresponding rows.

Qi Van Eikema Hommes

#### Johnson and Johnson Ortho-Clinical Diagnostics OASIS Analyzer

Image of Vitros 5.1 cluster removed due to copyright restrictions.

#### **OASIS Major Subsystems**



# **Case Study Objectives**

- 1. Build a DSM from requirements using the DM-DSM conversion method;
- 2. Compare the resulting DSM with the DSM experts built using traditional DSM construction method.
- 3. Understand which types of requirements can be used to predict system interactions. Judge whether the prediction DSM is complete.
- 4. Aid the system integration manager's work on planning and managing OASIS subsystem interfaces.

#### **DSM Constructed from Requirements**

|      | APPS | MACO | USIF | SLIN | IRME | ELME | ERME | SAHA | SLSU | REFL | SRME | STRU | SAIN | ALBU     | cuin | MTLD | PHMT | RGSU | VTLD | POWR | ASAP | CADL | CFDL | CUDL     | DFDL     | MADI | MFDL | MTDL | RGDL | SLDL | SRDL | VTDL |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|----------|------|------|------|------|------|------|------|------|------|----------|----------|------|------|------|------|------|------|------|
| APPS |      | Х    | Х    | Х    | Х    | Х    | Х    | X    | X    | X    | X    |      | Х    | Х        | Х    | X    | Х    | Х    | Χ    |      |      |      |      | I        | i        |      |      |      |      |      |      |      |
| MACO | Χ    |      | X    | Х    | Х    | Х    | Х    | Х    | Х    | X    | Х    | Χ    | Х    | Х        | Х    | Х    | Х    | Χ    | Х    |      | 5    | OTT  | W    | are      | •        |      |      |      |      |      |      |      |
| USIF | Χ    | Х    |      |      |      |      |      |      |      |      |      |      |      |          |      |      |      | Х    |      |      |      |      |      | <u> </u> | <u> </u> |      |      |      |      |      |      |      |
| SLIN | Χ    | Х    |      |      | X    | Х    | Х    |      | Х    |      | Х    | Χ    |      |          |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| IRME | Χ    | Х    |      | Х    |      |      |      |      |      |      |      |      | _    |          |      |      | 1    |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| ELME | Χ    | Х    |      | Х    |      |      |      |      |      |      |      |      |      | h        | n I  | Fili | m    |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| ERME | Χ    | Х    |      | Χ    |      |      |      |      |      |      |      |      |      | <u> </u> | L    |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| SAHA | Χ    | Х    |      |      |      |      |      |      |      |      | Х    | Х    |      |          |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| SLSU | Χ    | Х    |      | Х    |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| REFL | Χ    | Х    |      |      |      |      |      |      |      |      |      |      | Χ    |          |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| SRME | Χ    | Х    |      | X    |      |      |      | X    |      |      |      |      | Χ    | Χ        | Χ    | Х    |      | Х    | Х    |      |      |      |      |          |          |      |      |      |      |      |      |      |
| STRU |      | Х    |      | X    |      |      |      | Х    |      |      |      |      |      | Χ        |      | X    |      |      | Χ    |      |      |      |      |          |          |      |      |      |      |      |      |      |
| SAIN | Χ    | Χ    |      |      |      |      |      |      |      | Х    | Х    |      |      | Χ        |      |      |      |      |      |      |      |      | • •  | Ch       | om       |      | tn   |      |      |      |      |      |
| ALBU | Х    | Х    |      |      |      |      |      |      |      |      | Х    | Х    | X    |          |      |      |      |      | X    |      | F ▼  | ve   | l C  | - 1 1    |          | 113  | uy   | '    |      |      |      |      |
| CUIN | Χ    | Χ    |      |      |      |      |      |      |      |      | Х    |      |      |          |      |      | Χ    |      |      |      | Γ    |      |      | I        |          |      |      |      |      |      |      |      |
| MTLD | Χ    | Χ    |      |      |      |      |      |      |      |      | Х    | Χ    |      |          |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| PHMT | Х    | Х    |      |      |      |      |      |      |      |      |      |      |      |          | X    |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| RGSU | Χ    | Х    | Х    |      |      |      |      |      |      |      | Х    |      |      |          |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| VTLD | Χ    | Χ    |      |      |      |      |      |      |      |      |      | Χ    |      | Χ        |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| POWR |      |      | Χ    | X    | X    | Χ    | X    | Χ    | Χ    | X    | Х    | Χ    | Χ    | Χ        | Χ    | Х    | Χ    | Х    | Χ    |      |      |      |      |          |          |      |      |      |      |      |      |      |
| ASAP |      |      |      |      |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| CADL |      |      |      |      |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| CFDL |      |      |      |      |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| CUDL |      |      |      |      |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| DFDL |      |      |      |      |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| MADI |      |      |      |      |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| MFDL |      |      |      |      |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| MTDL |      |      |      |      |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| RGDL |      |      |      |      |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| SLDL |      |      |      |      |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| SRDL |      |      |      |      |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |
| VTDL |      |      |      |      |      |      |      |      |      |      |      |      |      |          |      |      |      |      |      |      |      |      |      |          |          |      |      |      |      |      |      |      |

#### Compare Requirements DSM with Expert DSM



#### How Many Marks Match

The experts did not capture **75** interfaces predicted by the requirements.

The requirements prediction DSM missed 118 interactions captured by the experts.

There are 54 marks captured by both the experts DSM and the DSM from requirements.

# Analyzing the Unmatched Marks

|                                        | Number of        |                                                                                                                |                     |                                                                                                  | Problem of<br>the matrix |
|----------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------|--------------------------|
| Type of Missing<br>Mark                | missing<br>marks | Reason for Missing                                                                                             | Who Missed<br>them  | Remedy                                                                                           | conversion<br>method     |
| (1) Hardware-software<br>interaction   | 69               | The experts did not involve<br>software people in the DSM<br>exercises.                                        | JNJ engineers       | involve software people in the next DSM building exercise                                        | no                       |
| (2) Assay-hardware<br>interaction      | 64               | No assay design requirement<br>has been documented.                                                            | requirements<br>DSM | JNJ chemists produce assay<br>design requirements<br>documents.                                  | no                       |
| (3) Power subsystem<br>interaction     | 17               | The power subsystem engineer<br>says there will be no need for<br>information feedback to other<br>subsystems. | requirements<br>DSM | Does not count as a mistake.                                                                     | no                       |
| (4) Reliability<br>induced interaction | 12               | Reliablity requirement<br>decomposition is difficult to use<br>to predict system level tradeoffs.              |                     | Use past design history on<br>relialbity issues (e.g. the<br>hazard analysis document at<br>JNJ) | yes                      |
| (5-1) Function types<br>of interaction | 11               | Not reflected in reuqirements decomposition structure.                                                         | requirements<br>DSM | better requirements writing and management                                                       | no                       |
| (5-2) Spatial types of<br>interaction  | 14               | Spatial relationship is not detailed by requirements.                                                          | requirements<br>DSM | Use Datum Flow Chain                                                                             | yes                      |
| (6) experts missed<br>interaction      | 6                | experts did not bring them up<br>during DSM building exercises.                                                | JNJ engineers       | JNJ engineers can learn from the requirements driven DSM.                                        | no                       |

# The Achievable Potential



Providing:

- JNJ engineers involve software engineers in the DSM building exercise
- Chemists write assay requirements
- JNJ updates the trace-ability between product level requirements and subsystem level requirements

#### Limitation of the Method



# Can all requirements be decomposed to predict system interactions?

#### **Requirements Decomposition**

|                                                                                                          | Can predict system interactions                                                                | Cannot predict system interactions                                                         |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Can be decomposed<br>in the same way as<br>the FR's in the<br>Axiomatic Design                           | Functional,<br>Maintainability,<br>Operational,<br>Environment<br>Expandability,<br>Appearance | None                                                                                       |
| Can be decomposed<br>but not in the same<br>way as<br>decomposing the<br>FR's in the<br>Axiomatic Design | Performance<br>(Modeling)<br>Packaging (DFC, DSM)<br>Design Constraints<br>(DSM)               | Reliability (budgeting)<br>Size (budgeting)<br>Weight (budgeting)<br>Cost (budgeting)      |
| Difficult to<br>decompose                                                                                | None                                                                                           | Installation<br>Standards<br>Safety<br>DFMAS<br>Component Reuse<br>Operability<br>Shipping |
| No strong evidence<br>in this case study                                                                 | Disposal<br>Distribution<br>Training<br>Budget and Timing<br>Patents                           |                                                                                            |

#### **Comparison of the Three Methods**

Axiomatic Design Matrix (DM)

X X

| Х |   |
|---|---|
| Х | Х |

Uncoupled Design

Decoupled Design

Avoids coupling by smart engineering design.



Image by MIT OpenCourseWare.

Accepts coupling and manage it by streamlining the process, or modularizing the system architecture. DM - DSM

Reduce the amount of coupling through good design. Manage the inevitable coupling when a coupled design makes more business sense. DSM shows the bottleneck in systems and ultimately drive people toward **Axiomatic Design** preferred results.

# Summary of DM-DSM Method

- We can get a DSM from a DM
- The diagonal elements are the output variables in matrix conversion
- Not all system interactions can be predicted from DM
- Coupled design can be managed and improved using DSM.
- Do think about reducing system coupling by exploring alternative design concepts first.

# Lecture Summary

- Introduction to Axiomatic Design
  - ✓ Four domains
  - ✓ Axiom 1—Independence Axiom
    - ✓ Design Matrix
    - ✓ Zigzagging
  - ✓ Axiom 2—Information Axiom
- Design Structure Matrix for Technical Systems
- ✓ DM—DSM Method

MIT OpenCourseWare http://ocw.mit.edu

ESD.33 Systems Engineering Summer 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.