Spectrum Policy Lecture #2: Spectrum Management Reform

William Lehr

Massachusetts Institute of Technology

ESD 68 :

Communications and Information Policy

Massachusetts Institute of Technology

March 8, 2006

Outline

- □ Why spectrum reform now: a recap..
- Models of spectrum regulation
- Property Rights v. Commons
 - Simplistic view
 - More complicated view

Why spectrum reform now?

- Lots of new technology and services that are being held back by legacy regulations...
 - Insufficient spectrum for commercial use
 - What is available, is not used efficiently
 - License rules limit market flexibility
- Problem: Artificial spectrum scarcity!
 - Sharing opportunities missed
 - Innovation blockaded: services, devices, and business models
 - High marginal cost for spectrum (auctions bankrupt providers)
- □ Solution: Spectrum Reform...

Goals for Spectrum Policy Reform

- □ Eliminate artificial scarcity: introduce market forces
 - Flexible use, secondary market trading
- □ Accelerate wireless broadband revolution
 - Convergence of Internet & wireless
 - Promote evolution from 2G to 3G
- Promote adoption of advanced technology
 - Refarm underused spectrum to high value uses
 - Enable new capabilities, promote investment (smart receivers)
- □ Last mile bottleneck: unleash 3rd mile competition
 - New, low cost infrastructure in developing world
- □ Enable new business models:
 - MVNOs and value-added service providers
 - Wireless grids and edge-based networks

Spectrum Management Models

- □ Three basic models:
 - Command & Control: (legacy model under attack)
 - Technology, provider, services specified by regulator
 - Exclusive license: "Property rights"
 - Flexible, transferable licenses to operate in area/band.
 - Licensee chooses technology, services
 - Secondary markets: licensee can trade rights to third parties
 - Unlicensed: "Commons"
 - Underlay: UWB, Part 15 devices (secondary use)
 - Opportunistic: interleaving, use white space (secondary use)
 - Dedicated: ISM 2.4 and 5 GHz bands used by WiFi
- Policy recommendation: increased reliance on exclusive licensed for scarce spectrum or commons otherwise
 - Especially for spectrum below 3GHz

Spectrum Management and Wireless Markets

- □ Broadcasting Spectrum (exclusive, inflexible licenses) example of problem
 - Architecture for high power transmission for over-the-air broadcasters uses (low power) spectrum inefficiently
 - Move terrestrial TV to satellites or wires (cable)
 - Encourage development of smart receivers
 - Legacy of using "interference" threat to oppose competition (FM radio, UHF broadcasting) and slow to deploy new technology (digital TV conversion)
 - What about over-the-air digital TV?

□ Mobile Telephone Services (exclusive, (semi)-flexible licenses) – success!

- Poster child for competition success: consumer choice, declining prices, service innovation.
- Use spectrum very efficiently. Lots of sharing.
- Allocated via auctions (but what about 3G auctions and telecom meltdown in 2000?)
- Benefits of mandating a single standard? 2G in Europe v. US
- Further growth constrained by lack of access to available spectrum
- □ WiFi success (open access, unlicensed) success!
 - Power limits on equipment. No exclusive right to interference protection.
 - Congestion emerging as problem.
 - Is this model generalizable?

	Future is shared spectrum: decoupling spectrum frequencies from infrastructure investment & applications	
	Technology (Capabilities)	Smart radio systems, spread spectrum, transition to broadband platform architectures \rightarrow frequency agility, expanded capacity for sharing
	Revenue (Customer experience)	Heterogeneous networks (3G/WiFi, wireless/wired, global roaming) \rightarrow 24/7 availability, simplicity of use, seemless mobility
	Costs (Network provisioning)	Bursty traffic, multimedia services, fat-tailed usage profiles \rightarrow lower costs, take advantage intermodal competition
OI	Policy (Spectrum reform)	Transition to expanded flexible market-based licensing and unlicensed spectrum mgmt regimes \rightarrow reduced <i>artificial scarcity</i> due to legacy regulations

Problem with Spectrum Mgmt: Artificial Scarcity

- □ Status Quo regulation => Command & Control
 - Blocks efficient reallocation of spectrum
 - Distorts opportunity costs => innovation, investment, competition
- **Golution:** Transition to market forces

Licensed (aka, "Market Mechanism," "Exclusive Use," or "Property Rights")	Unlicensed (aka, "License-exempt," "Open," "Free," or "Commons")
 Exclusive use: "right to exclude other transmitters" Flexible: choice of technology & rules used to manage spectrum Tradable: transferable right, secondary markets 	 Non-exclusive use: "right to transmit" Flexible: choice of technology consistent with rules/etiquette Collective choice of rules: standards/protocol (or government?)
Elayors of Unlicensed	

- •Underlay: UWB, Part 15 devices (secondary use)
- •Opportunistic: interleaving, use white space (secondary use)
 - •Dedicated: ISM 2.4 and 5 GHz bands used by WiFi ("Part 15")

Current Trajectory for Reform

- \Box From status quo C&C => flexible, tradable, exclusive licenses
- □ Unlicensed for low-power, low-range uses (<100m)
 - Limited allocation below 3Ghz
 - Underlays and Overlays (??), Dedicated @ 5GHz

#1: Need exclusive licenses (and secondary markets) to manage when scarce (if not scarce, then unlicensed best...)

#2: Unlicensed (decentralized, commons) suitable only [OLehr, 2006] for managing short distance, low cost of congestion

9

Property Rights v. Commons, part I (naïve view)

	Property Rights	Commons
View?	Transfer control to private	Government-mandated
	sector via exclusive &	communnal/"open access" use
	flexible licenses defined over	for large frequency blocks
	frequency blocks	
Supporters?	Kwerel, Fahlhaber, Farber,	Lessig, Noam, Reed, Benkler,
	Hazlett, Cave economists	Peha engineers and lawyers
	& regulators	
Spectrum scarce?	Yes	No
Pay for spectrum?	Auctions	No, "free" to be shared
Markets or regulation?	Markets	Regulation
Network architecture	Network-centric, centralized	Edge-centric, distributed
	control, service provider	control, customer equipment
	model	model
What to do with	Let them keep windfall. Cost	A detail. Buy them off if
incumbents?	of transition.	necessary.
Management? Use?	Centralized, single	Decentralized, communal
^{©Lehr, 2006} False dichotomy and overly simplistic clustering of issues		tic clustering of issues

Licensed v. Unlicensed (simplistic view)

Markets	Government
Auctions	Free
Scarce	Abundant

- Spectrum scarce: use markets => exclusive licenses
 - Eliminate command & control. Transition to market forces. Allocate initially with auctions.
 - Define property rights that may be flexibly traded in secondary markets
- Spectrum abundant: conserve transaction costs => unlicensed
 - No need to incur overhead of property rights regime to allocate
 - Provide open access.
- Coordination costs
 - Small area (low power) (e.g., within home) => coordination costs without centralized enforcement are low => unlicensed fine
 - Large area (high power) (e.g., metro mobile) => coordination costs high, spectrum and network are co-specialized => use licensed
- Conclusion: (1) Flexible licensed for scarce (low-frequency) spectrum; and (2)
 Unlicensed access via secondary use (underlays, overlays)

Commons v. Property Rights, part II

- □ Some common themes, falsely dichotomized...
 - Markets v. Regulation
 - Auctions v. Free Use
- □ Real differences that may be relevant...
 - Spectrum scarcity
 - Frequency bias v. other ways to define "spectrum"
 - Network v. Edge/ Service v. Equipment

Common themes, false dichomomy

Markets vs. Regulation

- □ Simplistic: "Markets vs. Collective/Central Planning"
- Markets could adopt commons-sharing protocol if efficient
 - Fahlhaber's "Public Parks"
- □ Spectrum Courts could replace administrative in either model
- Regulation in any case
 - By property rights or by administrator
 - Courts not cheaper than government necessarily
 - Government role does not disappear
 - Comm Act '34 \rightarrow cannot alienate public ownership. Periodic review built in.
 - Realpolitik concerns associated with transition
 - On-going need to manage/enforce interference management
- □ And, what if "spectrum" is a *public good*?

Spectrum a public good?

□ Public goods are (1) non-rival; (2) non-excludable

	Excludable	Non-excludable
Rival	Private Property	Common Pool Resource
Non-rival	Club Good	Public Good

- Technology: made more public-goods like?
 - Non-Rival: Ability to share $\hat{\uparrow}$
 - Excludability: GPS \Uparrow , Ubiquity of radios \Downarrow
- Technology favors commons now?

Common themes, false dichomomy

Auctions vs. Free Use

- □ *If* scarcity, need to allocate and opportunity cost is borne. How financed/paid for is separable matter.
- Auctions achieve efficient assignment
 - Not necessarily if (1) market power; (2) capital market inefficiencies; (3) irreversible investments & uncertainty (lock-in).
 - Only for first assignment (also need efficient secondary markets)
- Could use fee mechanism to charge for access. Could have admission control for access to congested commons.
- □ If spectrum revenue collected, who gets it?
 - General fund or keep in sector (e.g., auctions as general tax mechanism)? Is a "spectrum tax" efficient?

Real differences that may be important..

Spectrum scarcity?

- What can technology do?
 - Smart receivers, MUD, etc. increase capacity
 - Need to maintain innovation and adoption incentives.
- □ No scarcity, then no need for property rights
 - Return to pre-1912 world for RF.
- □ Even if scarcity, commons may be more efficient
 - Open access/unlicensed instead of frequency-area licenses
- □ But, can we be certain?
 - How to protect sunk investment? (What is value of capital equipment?)
 - Cannot have free resource that is substitute for other costly resources (computation v. transport v. storage)
 - Is commons more easily reversible? (Interest group politics v. "Takings")
 - Markets or regulation *redux*

Spectrum scarcity is matter of perspective

Off-diagonal cases more common? Weak/low or Strong/high
Dynamic shared spectrum options

Multiple, complementary regulatory options

Real differences that may be important..

How to define interference?

- Who is causing the harm?
 - Legacy: Tx *cause* interference with Rx
 - New view: Dumb Rx *impose* externality on smart Rx
 - Ronald Coase: question of perspective, how you define property rights
- □ How to regulate?
 - Legacy: Restrict inputs (power limits) to limit outcomes (interference)
 - New view: Specify outcome limits (spectrum temp, receiver standards)
- **u** How to implement?
 - Etiquettes (protocols) v. Prices v. Torts
 - Commons favors smart devices

Real differences that may be important..

Network/Service v. Edge/Equipment

- Which industry structure better?
 - Licensed/Property rights favors service providers.
 - Unlicensed/Commons favors equipment makers and end-users
- **u** Implications for:
 - Competition & Market Power (foreclosure)
 - Innovation & Lock-in
 - Investment in infrastructure
 - Regulatory approach (mechanism design)

How different...

WL	

Technology	UMTS, CDMA-2000, etc.	WiFi (802.11b), etc.
Bandwidth	Low (~100s Kbps)	High (~10s Mbps)
Coverage	Ubiquitous (Km)	Local (100m)
Deploy Cost	High (~\$50k)	Low (~\$1k)
Spectrum	Licensed	Unlicensed
Services	Voice adding data	Data adding voice
Retail infrastructure	Yes, service model in place	No, need to add

3G

Wireless Industry structure?

Traditional Carrier Model

3G

- **D** Top Down
- Vertically Integrated
- Centralized Control

 Accommodates Alternative Players

WLAN

- **Bottom Up**
- Less Vertically Integrated
- Distributed Control

Service Provider Model Network-centric (Bell system redux?) End-user Equipment Model Edge-centric (Internet vision)

^{©Lehr, 2} Substitutes or Complements? WLANs Disruptive technology?

LL

Example?	Telecom Services Computer	
Business model?	Invest in capacity and	Sell boxes to
	lease access to	consumers who
	consumers for	replace when become
	monthly subscription	obsolete
	service	
Where's network intelligence?	Network	Edge devices
Where's network CAPEX?	Service provider	End-user
Innovation adoption process?	Centralized	Decentralized
Who controls services?	Service provider	Customers
Regulatory?	Utility regulation	Unregulated,
		Certification, Industry
		Standards

Service

Different industry economics, institutional/regulatory history

Private Property v. Commons Debate

	Private Property	Commons
Resource is "scarce" (allocative efficiency)	+	
Transaction costs high (relative to value)		+
Compactness f: smaller community, reputation effects can work		+
Productivity $\hat{\uparrow}$: value of economic activity $\hat{\uparrow}$	+	
Complexity $\hat{\Pi}$: distance $\hat{\Pi}$, need network with co-specialized investments	+	
Innovation/investment incentives? (dynamic efficiency)	Network providers	Equipment vendors Smart receivers
Competition? (productive efficiency)	Incumbents	Entrants
Fairness?	Auctions?	Fees?

Licensed v. Unlicensed (more complicated)

Markets	Government
Auctions	Free
Scarce	Abundant

- □ Both consistent with markets, both still regulated
 - Unlicensed protocol can be chosen by SDO or markets
 - Enforcement via courts of license property rights is regulation by another means
- □ No free lunch, but spectrum reform lowers opportunity cost
 - Transition, congestion, transaction costs must be borne
 - Auctions may be used to effect transition, but not to extract rents
- □ Scarcity we observe is mostly "artificial"
 - Not driven by need to avoid "interference"
 - "Exclusive licenses" retain potential for artificial scarcity