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Question from Session Two
Yesterday we used uniformly distributed random 

variables to model uncertain demand

This implies identical probability of median as well 
as extreme high and low outcomes. This is may 
not be appropriate…

⇒ What alternative probability distributions should 
we use to sample demand?
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Session three – Modeling Uncertainty
• Objectives:

– Generate random numbers from various 
distributions (Normal, Lognormal, etc)

• So you can incorporate in your model as you wish

– Generate and understand random variables that 
evolve through time (stochastic processes)

• Geometric Brownian Motion, Mean Reversion, S-
curve
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Open ESD70session3-1Part1.xls

(Two parts because RAND() calls and graphs 
take long to compute and update for every 

Data Table iteration…)

About random number generation
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About random number generation
• Generate normally distributed random numbers:

– Use NORMINV(RAND(), μ, σ)  (NORMINV stands for 
“the inverse of the normal cumulative distribution”) 

– μ is the mean
– σ is the standard deviation

• In cell B1 in “Sim” sheet, type in 
“=NORMINV(RAND(), 5, 1)”

• Create the Data Table for 2,000 samples
• Press “command =“ or “F9”, see what happens
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Random numbers from triangular distribution

• Triangular distribution could work as an  
approximation of other distribution (e.g. 
normal, Weibull, and Beta)
– Faster computationally 

• Try “=RAND()+RAND()” in the Data 
Table output formula cell B1

• Press “command =“ or “F9”, see what 
happens
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Random numbers from lognormal distribution

• A random variable X has a lognormal 
distribution if its natural logarithm has a normal 
distribution

• Using LOGINV(RAND(), ln_μ, ln_σ)
– ln_μ is the mean of ln(X)
– ln_σ is the standard deviation of ln(X)

• In the Data Table output formula cell B1, type 
“=LOGINV(RAND(), 2, 0.3)”

• Press “command =“ or “F9”, see what happens
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Give it a try!

Check with your neighbors…

Check the solution sheet…

Ask me questions…
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• We have just described the probability 
density function (PDF) of random variable x, 
or f(x)

• We can now study the time function of 
distribution of random variable x across time, 
or f(x,t)

• That is a stochastic process, or in plain 
English language:  

TREND + UNCERTAINTY

From probability to stochastic processes
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Three stochastic models
• Geometric Brownian Motion

• Mean-reversion

• S-Curve
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Geometric Brownian Motion
• Brownian motion (also called random walk)

– The motion of a pollen in water
– A drunk walk in Boston Common
– S&P500 return

• Rate of change of the geometric mean is 
Brownian, not the underlying observations
– For example, stock prices do not necessarily follow 

Brownian motion, but their returns do!
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• This is the standard model for modeling stock 
price behavior in finance theory, and lots of other 
uncertainties

• Mathematic form for Geometric Brownian Motion 
(you do not have to know):

SdzSdtdS σμ +=

where S is the stock price, μ is the expected return on the 
stock, σ is the volatility of the stock price, and dz is the 
basic Wiener process giving a “random shock” to the trend 
μ

Brownian motion theory

trend uncertainty
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Open ESD70session3-1Part2.xls 

Simulate a stock price
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Simulate a stock price
• Google’s common stock price as of 8/31/09 is 

$461.67 (see “GOOG” tab)
• Using regression analysis on historical price 

data, we calculate monthly growth rate (drift) 
of μ = 1.4% and volatility σ = 31.3%

• These two values are key inputs into any 
forward-looking simulation models. We will be 
using them repeatedly, so lets define their 
names…
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Defining Excel variable names
1. Select cell with the historical mean value 

(1.4%) and go to: “Insert” ⇒ “Name” ⇒
“Define”

• Formulas ⇒ Name Manager in Excel 2007

2. Enter field name “drift” and hit “OK”

3. Repeat the same for historical standard 
deviation and call that variable “vol”
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Simulate a stock price (Cont)

Time Stock 
Price

Random Draw from 
standardized normal 

distribution1

Expected Return + 
random draw * 

volatility
September $461.67 =NORMINV(RAND(),0,1) =drift+vol*C2

October =B2*(1+D2)

November

December

Complete the following table for Google stock in 
tab “GOOG forecast”:

1) Standardized normal distribution with mean 0 and standard deviation 1
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Simulating Google returns in Excel
1. In worksheet “GOOG forecast”, type 

“=NORMINV(RAND(),0,1)” in cell C2, and drag down 
to cell C13

2. Type “=drift+vol*C2” in cell D2, and drag down to 
cell D13

3. Type “=B2*(1+D2)” in cell B3, and drag down to cell 
B13

4. Create a “Line Chart” under “Insert” menu
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Give it a try!

Check with your neighbors…

Check the solution sheet…

Ask me questions…
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Mean reversion
• Unlike Geometric Brownian Motion that 

grows forever at the rate of “drift”, some 
processes have the tendency to 
– Fluctuate around a mean
– The farther away from the mean, the 

higher the probability of reversion to the 
mean

– The speed of mean reversion can be 
measured by a parameter η
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Mean reversion theory
• Mean reversion has many applications 

besides modeling interest rate behavior in 
finance theory

• Mathematical form (you do not have to 
know):

where r is the interest rate, η is the speed of mean 
reversion, μ is the long-term mean, σ is the volatility, 
and dz is the basic Wiener process

dr =η(μ − r)dt +σdz
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• In finance, people usually use mean 
reversion to model behavior of interest rates 
and asset volatilities

• Suppose the Fed rate r = 4.25% today, the 
speed of mean reversion η = 0.3, the long-
term mean μ = 7%, the volatility σ = 1.5% per 
year

• Expected mean reversion is: dr =η(μ − r)dt

Simulating interest rate
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Time Interest rate Random Draw from 
standardized normal 

distribution

Realized return

2006 4.25% =NORMINV(RAND(),0,1) =$H$2*($H$3-B2)+C2*$H$4

2007 =B2+D2

2008

2009

2010

Complete the following table for interest rate:

dr =η(μ − r)dt +σdz

Simulating interest rate
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1. In worksheet “Interest Rates”, type 
“=NORMINV(RAND(),0,1)” in cell C2, and drag down 
to cell C12

2. Type “=$H$2*($H$3-B2)+C2*$H$4” in cell D2 to 
represent the model, and drag down to cell D12

3. Type “=B2+D2” in cell B3, and drag down to cell B12. 
NOTE: the two values are added since the model 
expresses a change in return compared to initial 
return, not a change in stock price as for the GBM 
model

4. Create “Line Chart” under “Insert” menu

Interest rate forecast in Excel
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Give it a try!

Check with your neighbors…

Check the solution sheet…

Ask me questions…
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• Many interesting process follow the S-
curve pattern

Time

For example, demand for a new technology initially grows 
slowly, then demand explodes exponentially and finally 
decays as it approaches a natural saturation limit

S-curve
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• Overall form of S-curve

– M is upper bound on maximum value
– b determines how fast we go through the temporal 

range to reach the upper bound
– a interacts with b, but translates the curve 

horizontally

y(x) = M
1+ ae(−bx )

S-curve
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S-curve
Upper bound M = 4000

Curve sharpness b = 1.5

Horizontal position a = 199
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S-curve

Saturation part

Growing part
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Modeling S-curve deterministically
• Parameters:

– Demand at year 0
– The limit of demand (M), or demand at time ∞
– Sharpness parameter b

• Model:

– Translation parameter a can be approximated from demand 
at year 0 and the upper bound M at ∞:

a = M
Demand(0)

−1

D(t) = M
1+ ae(−bt )
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Modeling S-curve dynamically
• We can estimate incorrectly the initial 

demand, the limit of demand, and the 
sharpness parameter, so all of these 
are random variables

• The growth every year is subject to an 
additional annual volatility
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S-curve example
• In tab “S-curve”

– Demand(0) = 80 (may differ ± 20%)

– Limit of demand M = 1600 (± 40%)

– Sharpness parameter b = 1 (± 40%)

– Annual volatility is 10%
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Give it a try!

Check how the model is built…

Ask me questions…
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Back to Big vs. small?
• We talked about the following models 

today
– Normal, Triangular, Lognormal
– Geometric Brownian Motion
– Mean Reversion
– S-curve

• Which one is more appropriate for our 
demand modeling problem? Why?
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Model calibration challenges
• Knowing the theoretical models is only a start. 

Properly calibrating them is critical
• Otherwise – GIGO 
• In many cases, data is scarce for interesting 

decision modeling problems 
• It is good habit to study plausible sources of 

data for your line of work 
– So you have a model that is representative of 

reality!
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Issues in modeling
• Do not trust the model – “all models are wrong, some 

are useful”
– Highly complicated models are prone (if not doomed) to be 

misleading
– The more inputs required – the more room for error
– Always check sensitivity of inputs through Sensitivity Analysis

• Dynamic models offer great insights, regardless of the 
output data errors

• In some sense, models are useful to structure thinking, 
analysis, and communication
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Summary
• We have generated random numbers 

from various distributions
• Explored random variables as functions 

of time (stochastic processes)
– Geometric Brownian Motion
– Mean Reversion
– S-curve
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Next class…
The course has so far concentrated on ways 
to model uncertainty 

Modeling is passive. Managers have the 
capacity to adapt to uncertainties proactively. 
This capacity is called flexibility and 
contingency planning

⇒ Next class we’ll finally explore ways to 
extract additional value from uncertainty and 
assess the value of flexibility!
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