
Surreal Numbers and Games


February 10, 2009 

Introduction 

Last week we began looking at doing arithmetic with impartial games using 
their Sprague-Grundy values. Today we’ll look at an alternative way to repre­
sent games as numbers that we will extend to include partisan games as well. 

Surreal numbers were introduced in Donald Knuth’s (fiction) book Surreal 

Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found 

Total Happiness, and the full theory was developed by John Conway after 
using the numbers to analyze endgames in GO. We’ll start by using Conway’s 
methods to represent games, and then show how these games/numbers form 
a new number system. 

On Numbers and Games 

To begin, we’ll look at a partisan version of the impartial game of Green 
Hackenbush we saw last week. This game is called “Red-Blue Hackenbush.” 
It is played similarly to Green Hackenbush, but now each line segment might 
be colored either red or blue. There are two players who for convenience 
in notation will be called L and R. On L’s turn, he can only chop off blue 
branches, and R can only chop off red branches. As before, when a player re­
moves a branch, all branches that are now disconncected from the “ground” 
also disappear. The player to chop off the last branch wins. The game below 
is an example: 
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Below we’ll use this and other games to define games and surreal numbers. 

What is a Game 

A game (in combinatorial game theory) is defined as: 

G = {GL|GR} 

where GL, GR are sets of games themselves. This definition is recursive and 
can be confusing at first, so we’ll look at many examples. So G is a set of 
sets of games. The base case is {∅|∅} which will be called the endgame and 
occurs when neither player has any moves left. 

The sets of games in G are the positions each player can move to. In an 
impartial game, since each player has the same options, both GL and GR 

will always be the same. In a partisan game, such as red-blue hackenbush, 
these options can be different. 

First consider the red-blue hackenbush game in which both players have 
identical figures consisting of all branches of their own color. Each player 
has the same number of possible moves. The game will proceed as follows: 
the first player to move takes one branch of his color, the next player takes 
one branch of her color, and the game alternates back and forth until each 
player has only one branch left. The first player is forced to take his last 
branch, leaving the last branch on the page to the second player, who wins 
the game. We will call such a game, in which the second player to move 
wins, a zero position (equivalent to the P-position games with SG values 
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of 0 from last week). 

If the players had started with different numbers of branches, say 8 for L 

and 5 for R, then L would have a 3 move advantage, and we will say the 
value of this game G is 3. Similarly, if R has 3 more branches than L, the 
value of the game would be -3. 

In general, we’ll use the following outcome classes to describe games: 
(Note we use “always wins” to mean a player always has a winning strategy. 
Of course it is possible for them to make a mistake and lose.) 

• G = 0 The second player to move always wins. 

• G < 0 Player R always wins. 

• G > 0 Player L always wins. 

This seems to cover all possible values of G, but in many games we can imag­
ine cases where the first player to move always wins. This type of game is 
neither less than, greater than, or equal to 0. Instead, we will call it fuzzy or 
confused with 0, denoted as G||0. 

Consider the simple game consisting of a single blue branch. L has one 
move and R has none. This game is denoted as G = {0|}, since L can move 
to the 0 game and R has no moves. We will say this has a value of 1, since it 
is a one move advantage for L. Similarly, the game with a single red stalk has 
value G = {|0} and is equal to -1. So far we have the following “numbers”: 

{|} = 0, {0|} = 1, {|0} = −1 

Similarly, any game of the form {n|} = n + 1, {|n} = −n − 1. 

Can our games have fractional values? Look at the following red-blue hack­
enbush positions: 
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In figure b, if R moves first, he can only chop off the top branch, leaving 1 
branch for L and a game with a value of 1 since L now has a one move advan­
tage. If L moves, he can only chop off the bottom branch, leaving 0 branches, 
or the endgame. So the game is denoted as G = {{∅|∅}|1}. We can replace 
GR with 0, since we defined the endgame to be so above, giving us: G = {0|1} 

What is the value of G? We know it must be positive, since L clearly has 
the advantage in this game. But does L have a one-move advantage? If so, 
if we give R back an extra move then we would expect the value of the game 
to be 1 - 1 = 0, or a second player win. Let’s see what happens: 

Now if we were correct that the left stalk has a value of 1, then adding the 
red stalk with value -1 should make this a 0 game. If L goes first, he leaves 
two red branches with a value of -2. If R moves first he takes either branch, 
then L takes a branch, and there is still a branch left for R to take and win 
no matter what. Clearly this game has a negative value since R can win all 
the time. So what is the value of the original game? It turns out it is 1

2 , or 
a half move advantage for L. We can verify by adding two of these games 
together to see that they have a value of 1. 

So now our list of numbers is: 

1 1 
{|} = 0, {0|} = 1, {|0} = −1, {0|1} = , {1|0} = − , {n|} = n+1, {|−n} = −n−1 

2 2

What is a Surreal Number 

We will call a form (game) {L|R} numeric if there is no xL ∈ L and xR ∈ R 

such that xR ≤ xL. So every number to the left of the | must be less than 
every number to the right of the —. (note NOT equal! we’ll get to this case). 
Note that all surreal numbers can be games, but not all games can be surreal 
numbers. For instance, the games {0|0} and {1| − 3} can be games, but are 
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not numeric. 

Similar to our definition of games, L and R are themselves sets of surreal 
numbers, so the definition is again recursive. Also note that different sets L 

and R may actually form the same number. We say that numeric forms are 
placed in equivalence classes . So to be clear, the forms described above 
form equivalence classes, each of which is a (surreal) number. 

The following are useful theorems about surreal numbers. Proofs can be 
found in the reading for the week: 

1.	 Theorem 1: If x is a surreal number, then x = x. 

2.	 Theorem 2: If A = B and C = D, then {A|C} = {B|D}. 

3. Theorem 3: A surreal number X = {XL|XR} is greater than all mem­
bers of its left set xL and less than all members of its right set xR. 

4. Theorem 4: For the number X = {XL|XR}, we can remove any member 
of the left set xL except the largest or any member of the right set xR 

without changing the value of the number. 

Comparing Real Numbers (and games) 

The surreal numbers form a totally ordered field, and any two forms that are 
numeric can be compared to each other using the following rules: 

•	 Given two numeric forms x = {XL|XR} and y = {YL|YR}, we say x ≤ y 
iff there is no xL ∈ XL such that y ≤ xL and there is no yr ∈ YR such 
that yR ≤ x. The two numeric forms above are equal if x ≤ y and 
y ≤ x. 

Games that are not also numbers are tricky to order, so we often call them 
confused or fuzzy, as noted above. One example of such a game is {0|0}, the 
game in which either player can only move to the endgame, and so the first 
player to move wins. We denote this special game as ∗ since it comes up 
so often. This game is neither greater than, less than, or equal to 0. More 
about this soon. 
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Construction of Numbers (and Games) 

Surreal numbers can be constructed from the base case {∅|∅} = 0 using the 
induction rule. We start with the generation S0 = {0} in which 0 is con­
structed from just the emptyset (which from now on we will omit, so if there 
is no number in a set it is assumed to be the emptyset). Starting with this 
0th generation, each new generation Xn consists of all of the (well-formed) 
surreal numbers generated from subsets of ∪i<nSi. We say that the numbers 
born in generation Sn all have the same birthday, or were born on day n. So 
0 was born on day 0, and gave birth to all of the numbers that we know in 
the real number system. 

In terms of games, the birthday of a number can be seen as the depth of 
the game in the game tree. So the endgame, or 0, born on day 0, is a game 
that’s over. A game with value of 1 is 1 move into the game tree, etc. 

S1 is constructed from combinations of members of S0, or the emptyset and 
0. So possible members of S1 are: 

{0|}, {0|0}, {|0} 

But the middle form is omitted since it is not numeric ( 0 is not less than 0), 
so we only have two new numbers. These are 1 and -1. 

S2 now consists of all combinations of 0, 1, -1, and the emptyset: 

{−1, 0|}, {−1, 0, 1|}, {−1|}, {|0, 1, −1}, {|0, 1}, {|− 1}, {0|1}, {1|0}, {1| − 1} 

But we omit all of the non-well formed numbers and are left with four new 
numbers: 

{1|}, {| − 1}, {0|1}, {−1|0} 

which will be called 2, -2, 
2

1 , and −
2

1 , respectively. 

So a pattern emerges. Every new generation Sn has at its extremal ele­
ments −n and n as {|n − 1}, {n − 1|}, and all of the fractional numbers 
spaced equally in between all of the new elements and the previously exist­
ing numbers. 
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It seems that continuing in this manner can only give only all of the in­
tegers and all of the dyadic fractions (fractions with denominators as powers 
of two). But what happens if we extend our “tree” of numbers to infinity? 

On day , we eventually come to the number ω = {1, 2, 3, 4 . . . |} which is 
larger than all natural numbers. We also get −ω, which is smaller than all 
natural numbers, as well as ǫ = {0|1, 1

2 
1

4 
1

8 . . .}, which is the smallest pos­, , 

itive number (the opposite for the largest negative number). So we have 
infinite and infinitesimal numbers in this generation, what else? Numbers 
in the generation Sω may also belong to the familiar rational numbers. For 
instance, 1 = {1 , 1 + 1 , 1 + 1 + 1 + . . . |1 , 1 − 1 , . . .}. We also get tran­

3 4 4 16 4 16 64 2 2 8 
scendental numbers on day ω, for example π = {3, 25 , 201 , . . . |4, 7 , 13 , 51 , . . .}.

8 64 2 4 16 
With a little playing around we can get to any number. We can even get 
beyond infinity to generations ω + n. 

Evaluating Surreals 

So given a number {x|y}, how do we decide which surreal number it repre­
sents? {0|1} = 

2

1 , so we might be tempted to just take the average of the 
largest number on the left and the smallest number on the right, but it turns 
out this fails. We see this with an example. Take the number {2 1

2 |42

1 }. The 
average of these numbers is 31

2 , but we claim that the number it represents 
is 3. How do we test equality? We choose a form that we know is equal to 
3, {2|}. Now we show that for x = {2

2

1 |4
2

1 } and y = {2|}, both x ≤ y and 
y ≤ x. 

1.	 x ≤ y. 

•	 ∄xL ∈ XL such that y ≤ xL. This is true, since the only xL is 2
1

2 , 
which is less than or equal to y = 3. 
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•	 ∄yR ∈ YR such that yR ≤ x. This is vacuously true, since there is 
no member yR since YR is empty! 

2.	 y ≤ x. 

•	 There is no yL, so always there is no yL such that x ≤ yL. 

•	 The only member of XR is 4
1

2 , which is not less than or equal to 
3. 

So we have proven that the value of x must be 3. 

Below are some general forms you might find helpful: 

1.	 {n|n + 1} = n + 1
2 

2. 2p+1 p |p+1 
2n+1 = {

2n 2n }, or in other words, each fraction with a denominator 
as a power of two has as its left and right options the two fractions 
nearest it on the left and right that have a smaller denominator which 
is again a power of two. So { 1

2 |4
3 } = 

8

5 . 

In evaluating numbers and games we will use the Simplicity Rule, which 
says that out of all the numbers between the largest member of the left set 
and the smallest number of the right set, the surreal number value of the 
form is the simplest number that fits, where we use simplest as meaning the 
number born earliest. This is just either the smallest integer between the 
two, or else the fraction between them having the highest power of two in 
the denominator. 

(In class we’ll do some hackenbush examples with the simplicity rule) 

Arithmetic with Numbers (and Games) 

We showed last week that it can be helpful to break games up into sums of 
smaller, easier to evaluate, games, and use the sum of the values of these 
games to describe the larger game. The same is true with surreal numbers 
and their representations of games. 
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The Negative of a Number 

The negative of a number x = {XL|XR} is −x = {−XR| −XL}. In terms of 
games, the negative of a game is just the game with the positions of L and 
R reversed. In a hackenbush game, for instance, just interchange all of the 
blue and red segments to get the negative of a game. 

Addition 

To add the numbers x = {XL|XR} and y = {YL|YR} we get: 

x + y = {XL + y, x + YL|XR + y, x + YR} 

where X + y − {x + y : x ∈ X}, x + Y = {x + y : y ∈ Y }. Below are a few 
examples: 

• 0 + 0 = {|} + {|} = {|} = 0 

• x + 0 = x + {|} = {XL + 0|XR + 0} = {XL|XR} = x 

• 1

2 + 1
2 = {0|1} + {0|1} = {0 + 1

2 , 
1

2 + 0|1 + 1
2 , 1 + 1

2 } = {1

2 |
3

2 } = 1 

So in a sum of games G = {GL|GR} and H = {HL|HR}, the sum of the 
games has as left options the value if L moves in G, GL + H , (since H is 
unchanged) and HL + G if L moves in H . Similary, the right options are 
GR + H and HR + G depending on where R moves. This agrees with our 
notion of addition of surreal numbers. To subtract, just add the negative of 
a game. 

Multiplication 

Surreal numbers can also be multiplied, but we won’t really use this definition 
in our game analysis. I include it here just to show that it can be done and to 
fit with our original statement that the surreal numbers form an ordered field. 

To multiply x = {XL|XR} and y = {YL|YR}: 

xy = {XLy+xYL−XLYL, XRy+xYR−XRYR|XLy+xYR−XLYR, xYL+XRy−XRYL} 
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Special Non-numeric Games 

All of our arithmetic rules are defined for numbers, but we said before that 
a lot of games aren’t well-formed, or in other words aren’t actually numbers. 
Can we still do arithmetic with these games? The answer is yes! 

{0|0} 

Earlier we mentioned that we would call the game {0|0} *. Consider the

green hackenbush game with a single line segment left:

*picture here *

If left moves first, he takes the stalk and wins, and similarly right moves if

he goes first. What happens if we add another disconnected green stalk?

*picture here *

This is the game of * + *, since it consists of the sum of two * games. First

look at left’s options. He can take either one of the two stalks, after which

right takes the remaining one and wins. It is clear that the first player to go

loses. But this is just our definition of a 0 game! So we get:


∗ + ∗ = 0 

What about adding * to a number x? To look at this position we will 
introduce a third type of hackenbush, red-green-blue hackenbush, in which 
there are red, green, and blue segments. The red and blue ones belong to 
right and left, respectively, but the green segments may be cut by either 
player. Consider the game consisting of a stalk of 2 blue segments and a 
stalk of one green segment. This is the game 2 + *. Left has three options: 
take the green stalk to leave the game with a value of 2, take the bottom 
blue stalk for a value of *, in which case right will win on the next move by 
taking the remaining green stalk, or take the top left stalk to leave the game 
of 1+*. The most positive of these options is clearly to take the green stalk 
to make a value of 2. Right has only one option: take the green stalk to 
create a game of value 2. So we end up with: 

2 + ∗ = {2|2} 

Similarly, for any x + ∗, we get {x|x}. Often we omit the star from the 
expression x + ∗ and instead just write x∗. 

10 

ES.268



- The Mathematics of Toys and Games


Arrows 

To illustrate these next two values, we will introduce another game called 
Toads and Frogs. We will play the game for implicity on a strip of 5 squares 
starting with two toads on the left two squares and two frogs on the right 
two squares: 

TT − FF 

The toads can only move to the right one square each move and the frogs to 
the left. Toads and frogs can also jump over a toad or frog in an adjacent 
square to the next square over (as in Chinese Checkers). The game is over 
when a player can’t make a move. 

Consider the position T − TFF . Evaluating the possible T and F posi­
tions gives the game: {−TTFF |TFT − F} = {0|∗} since no one can move 
in the left option and the first player to move wins the right option. This 
value arises so often in describing games that it is given a special name, up, 
or ↑. Similarly, the opposite game {∗|0} is denoted as ↓. Since ↑= − ↓, we 
have ↑ + ↓= 0. 

Look at the starting position G = TT − FF = {T − TFF |TTF − F} = 
{↑ | ↓}. To evaluate this game we will look at the game G − ∗. Does L 

have a winning strategy from {↑ | ↓} + {0|0}? If he moves from * to 0, F 

will move in G to ↓, which favors R. If L moves to ↑, R will move from ↑ 
to * in G leaving *+*=0. So L does not have a winning strategy. We can 
show similarly that R also doesn’t have a winning srategy going first. So 
that means G − ∗ = 0. We can rewrite this as G = ∗ and get the following: 

{↑ | ↓} = {↑ |0} = {0| ↓} = {0|0} = ∗ 

Simplifying Games 

When looking at the options available to players in games, it is helpful when 
there are many options to be able to simplify things. We’ll use the following 
processes to simplify: 

1. Eliminate Dominated Options 

2. Eliminate Reversible Options 
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In a game G = {A, B, C, . . . |D, E, F . . .} if A ≤ B or D ≤ E we say that A 

is dominated by B and E is dominated by D. We can eliminate these domi­
nated options, since a logical player will only choose the best option available. 

Now to reversible options. Consider the same above, where if right moves 
to D then left has some option DL which is at least as good for left as G 

was to begin with, i.e. DL ≥ G. Then if right ever decides to move to G, 
then left can at least reverse the effect of this move by moving to DL ( and 
his position might even get better!). To get a better feel for this, consider 
the game of poker Nim. This game is similar to the Nim that we played last 
week. We play with three heaps of poker chips and can take any amount of 
chips from any single pile on a single turn. The only difference is that players 
are now also allowed to add any amount of chips to a single pile. (but not 
both add and subtract on the same turn). At first this game may seem more 
complicated than regular Nim, until we see that adding any amount of chips 
is a reversible move. Say player 1 adds x chips to a heap. Then player 2 
can just take away x chips from the heap and leave player 1 back where he 
started. So the strategy for poker Nim is the exact same as for regular Nim, 
with the exception of removing any chips your opponent might add to the 
pile. 

Games! 

Domineering 

The game of domineering is played on a checkerboard. Players alternate 
placing dominoes (the size of two checkerboard spaces) on the board. Left 
can only place his dominoes vertically, while Right can only place them hori­
zontally. The first player to not be able to place a domino on the board loses. 
Try evaluating the values of the opening positions on the following partially 
played domineering board. The value of the game is the sum of the values 
of these empty positions: 
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Exercises 

Try evaluating the Domineering and hackenbush positions on the worksheets. 
If you get stuck check them with the programs listed on the software page of 
the website. 
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