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 Lecture 3 Feb 16, 2010 

Playing Games with Algorithms: 

–	 most games are hard to play well: 
–	 Chess is EXPTIME-complete: 

–	 n × n board, arbitrary position 
–	 need exponential (cn) time to find a winning move (if there is one) 
–	 also: as hard as all games (problems) that need exponential time 

–	 Checkers is EXPTIME-complete: 

Chess & Checkers are the “same” computationally: solving one ⇒ 
solves the other 

(PSPACE-complete if draw after poly. moves) 

–	 Shogi (Japanese chess) is EXPTIME-complete 
–	 Japanese Go is EXPTIME-complete 

–	 U. S. Go might be harder 

–	 Othello is PSPACE-complete: 

–	 conjecture requires exponential time, but not sure (implied by 
P = NP) 

–	 can solve some games fast: in “polynomial time” (mostly 1D) 

Kayles: 

[Dudeney 1908] 

(n bowling pins) 

– move = hit one or two adjacent pins 
– last player to move wins (normal play) 

Let’s play!
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First-player win: SYMMETRY STRATEGY 

–	 move to split into two equal halves (1 pin if odd, 2 if even) 
–	 whatever opponent does, do same in other half


(Kn + Kn = 0 . . . just like Nim)


Impartial game, so Sprague-Grundy Theory says Kayles ≡ Nim somehow 

–	 followers(Kn) = {Ki + Kn−i−1, Ki + Kn−i−2 | i = 0, 1, . . . , n − 2} 
⇒ nimber(Kn) = mex{nimber(Ki + Kn−i−1),


nimber(Ki + Kn−i−2)

| i = 0, 1, . . . , n − 2}


– nimber(x + y) = nimber(x) ⊕ nimber(y) 
⇒ nimber(Kn) = mex{nimber(Ki) ⊕ nimber(Kn−i−1),


nimber(Ki) ⊕ nimber(Kn−i−2)

| i = 0, 1, . . . n − 2}


RECURRENCE! — write what you want in terms of smaller things 

How do we compute it? 

nimber(K0) = 0 (BASE CASE) 

nimber(K1) = mex{nimber(K0) ⊕ nimber(K0)}
0 0 = 0⊕ 

= 1 

nimber(K2) = mex{nimber(K0) ⊕ nimber(K1),

0 1 = 1
⊕

nimber(K0) ⊕ nimber(K0)}
0 0 = 0⊕ 

= 2 

so e.g. K2 + ∗2 = 0 2nd player win ⇒ 

nimber(K3) = mex{nimber(K0) ⊕ nimber(K2),

0 2 = 2
⊕

nimber(K0) ⊕ nimber(K1), 
0 1 = 1⊕

nimber(K1) ⊕ nimber(K1)}
1 1 = 0⊕ 

= 3 
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nimber(K4) = mex{nimber(K0) ⊕ nimber(K3),

0 3 = 3
⊕

nimber(K0) ⊕ nimber(K2), 
0 2 = 2⊕

nimber(K1) ⊕ nimber(K2), 
1 2 = 3⊕

nimber(K1) ⊕ nimber(K1)}
1 1 = 0⊕ 

= 1 

In general: if we compute nimber(K0), nimber(K1), nimber(K2), . . . in order, 
then we always use nimbers that we’ve already computed (because smaller) 

– in Python, can do this with for loop: 

k =	 960 – 4 972 – 4 984 – 4{}
for n in range(0, 1000): 961 – 1 973 – 1 985 – 1 

k[n] = mex ([k[i] ˆ k[n - i - 1] for i in range(n)] + 962 – 2 974 – 2 986 – 2 
[k[i] ˆ k[n - i - 2] for i in range(n - 1)]) 963 – 8 975 – 8 987 – 8 

print n, ”-”, k[ ]	 964 – 1 976 – 1 988 – 1 
965 – 4 977 – 4 989 – 4 

def mex(nimbers): 966 – 7 978 – 7 990 – 7 
nimbers = set(nimbers) 967 – 2 979 – 2 991 – 2 
n = 0 

968 – 1 980 – 1 992 – 1 
while n in nimbers: 

969 – 8 981 – 8 993 – 8 
n = n + 1 

970 – 2 982 – 2 994 – 2return n 
971 – 7 983 – 7 995 – 7 
periodic mod 12! 
(starting at ‘72) 

[Guy & Smith 1972] 

DYNAMIC PROGRAMMING 

How fast? to compute nimber(Kn): 

– look up ≈ 4n previous nimbers 
– compute ≈ 2n nimsums (XOR) 
– compute one mex on ≈ 2n nimbers 

– call all this O(n) work “order n” 

– need to do this for n = 0, 1, . . . ,m �m	 m� m(m + 1) 
O(n) = O n = O	 = O(n 2)⇒	

2 
n=0 n=0 

POLYNOMIAL TIME — GOOD 
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Variations: dynamic programming also works for: 

–	 Kayles on a cycle 

(1 move reduces to regular Kayles 2nd player win) ⇒ 
–	 Kayles on a tree: target vertex or 2 adj. vertices 

–	 Kayles with various ball sizes: hit 1 or 2 or 3 pins


(still 1st player win)


Cram: impartial Domineering 

–	 board = m × n rectangle, possibly with holes 
–	 move = place a domino (make 1 × 2 hole)


Symmetry strategies: [Gardner 1986]


–	 even × even: reflect in both axes


1st player win
⇒ 
–	 even × odd: play 2 center �s then reflect in both axes 

1st player win ⇒ 
–	 odd × odd: OPEN who wins?


Liner Cram = 1 × n cram


–	 easy with dynamic programming 
–	 also periodic [Guy & Smith 1956] 

– 1 × 3 blocks still easy with DP

–
 OPEN : periodic?


Horizontal Cram:
 1 only


sum of linear crams!
⇒


2 × n Cram: Nimbers
 OPEN Let’s play! 

3 × n Cram: winner OPEN 

(dynamic programming doesn’t work) 
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