
, ,

�

 Lecture 3 Feb 16, 2010

Playing Games with Algorithms:

–	 most games are hard to play well:
–	 Chess is EXPTIME-complete:

–	 n × n board, arbitrary position
–	 need exponential (cn) time to find a winning move (if there is one)
–	 also: as hard as all games (problems) that need exponential time

–	 Checkers is EXPTIME-complete:

Chess & Checkers are the “same” computationally: solving one ⇒
solves the other

(PSPACE-complete if draw after poly. moves)

–	 Shogi (Japanese chess) is EXPTIME-complete
–	 Japanese Go is EXPTIME-complete

–	 U. S. Go might be harder

–	 Othello is PSPACE-complete:

–	 conjecture requires exponential time, but not sure (implied by
P = NP)

–	 can solve some games fast: in “polynomial time” (mostly 1D)

Kayles:

[Dudeney 1908]

(n bowling pins)

– move = hit one or two adjacent pins
– last player to move wins (normal play)

Let’s play!

1

http://erikdemaine.org/papers/AlgGameTheory_GONC3

ES.268

http://erikdemaine.org/papers/AlgGameTheory_GONC3/

First-player win: SYMMETRY STRATEGY

–	 move to split into two equal halves (1 pin if odd, 2 if even)
–	 whatever opponent does, do same in other half

(Kn + Kn = 0 . . . just like Nim)

Impartial game, so Sprague-Grundy Theory says Kayles ≡ Nim somehow

–	 followers(Kn) = {Ki + Kn−i−1, Ki + Kn−i−2 | i = 0, 1, . . . , n − 2}
⇒ nimber(Kn) = mex{nimber(Ki + Kn−i−1),

nimber(Ki + Kn−i−2)

| i = 0, 1, . . . , n − 2}

– nimber(x + y) = nimber(x) ⊕ nimber(y)
⇒ nimber(Kn) = mex{nimber(Ki) ⊕ nimber(Kn−i−1),

nimber(Ki) ⊕ nimber(Kn−i−2)

| i = 0, 1, . . . n − 2}

RECURRENCE! — write what you want in terms of smaller things

How do we compute it?

nimber(K0) = 0 (BASE CASE)

nimber(K1) = mex{nimber(K0) ⊕ nimber(K0)}
0 0 = 0⊕

= 1

nimber(K2) = mex{nimber(K0) ⊕ nimber(K1),

0 1 = 1
⊕

nimber(K0) ⊕ nimber(K0)}
0 0 = 0⊕

= 2

so e.g. K2 + ∗2 = 0 2nd player win ⇒

nimber(K3) = mex{nimber(K0) ⊕ nimber(K2),

0 2 = 2
⊕

nimber(K0) ⊕ nimber(K1),
0 1 = 1⊕

nimber(K1) ⊕ nimber(K1)}
1 1 = 0⊕

= 3

2

� � � �

nimber(K4) = mex{nimber(K0) ⊕ nimber(K3),

0 3 = 3
⊕

nimber(K0) ⊕ nimber(K2),
0 2 = 2⊕

nimber(K1) ⊕ nimber(K2),
1 2 = 3⊕

nimber(K1) ⊕ nimber(K1)}
1 1 = 0⊕

= 1

In general: if we compute nimber(K0), nimber(K1), nimber(K2), . . . in order,
then we always use nimbers that we’ve already computed (because smaller)

– in Python, can do this with for loop:

k =	 960 – 4 972 – 4 984 – 4{}
for n in range(0, 1000): 961 – 1 973 – 1 985 – 1

k[n] = mex ([k[i] ˆ k[n - i - 1] for i in range(n)] + 962 – 2 974 – 2 986 – 2
[k[i] ˆ k[n - i - 2] for i in range(n - 1)]) 963 – 8 975 – 8 987 – 8

print n, ”-”, k[]	 964 – 1 976 – 1 988 – 1
965 – 4 977 – 4 989 – 4

def mex(nimbers): 966 – 7 978 – 7 990 – 7
nimbers = set(nimbers) 967 – 2 979 – 2 991 – 2
n = 0

968 – 1 980 – 1 992 – 1
while n in nimbers:

969 – 8 981 – 8 993 – 8
n = n + 1

970 – 2 982 – 2 994 – 2return n
971 – 7 983 – 7 995 – 7
periodic mod 12!
(starting at ‘72)

[Guy & Smith 1972]

DYNAMIC PROGRAMMING

How fast? to compute nimber(Kn):

– look up ≈ 4n previous nimbers
– compute ≈ 2n nimsums (XOR)
– compute one mex on ≈ 2n nimbers

– call all this O(n) work “order n”

– need to do this for n = 0, 1, . . . ,m �m	 m� m(m + 1)
O(n) = O n = O	 = O(n 2)⇒	

2
n=0 n=0

POLYNOMIAL TIME — GOOD

3

Variations: dynamic programming also works for:

–	 Kayles on a cycle

(1 move reduces to regular Kayles 2nd player win) ⇒
–	 Kayles on a tree: target vertex or 2 adj. vertices

–	 Kayles with various ball sizes: hit 1 or 2 or 3 pins

(still 1st player win)

Cram: impartial Domineering

–	 board = m × n rectangle, possibly with holes
–	 move = place a domino (make 1 × 2 hole)

Symmetry strategies: [Gardner 1986]

–	 even × even: reflect in both axes

1st player win
⇒
–	 even × odd: play 2 center �s then reflect in both axes

1st player win ⇒
–	 odd × odd: OPEN who wins?

Liner Cram = 1 × n cram

–	 easy with dynamic programming
–	 also periodic [Guy & Smith 1956]

– 1 × 3 blocks still easy with DP

–
 OPEN : periodic?

Horizontal Cram:
 1 only

sum of linear crams!
⇒

2 × n Cram: Nimbers
 OPEN Let’s play!

3 × n Cram: winner OPEN

(dynamic programming doesn’t work)

4

MIT OpenCourseWare
http://ocw.mit.edu

ES.268 The Mathematics in Toys and Games
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

