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Almost everyone has tried to solve a Rubik’s cube. The first 
attempt often ends in vain with only a jumbled mess of colored 
cubies (as I will call one small cube in the bigger Rubik’s cube) in 
no coherent order. Solving the cube becomes almost trivial once a 
certain core set of algorithms, called macros, are learned. Using 
basic group theory, the reason these solutions are not incredibly 
difficult to find will become clear. 
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�	 F means to rotate the front face 90 degrees clockwise. 

�	 A counterclockwise rotation is denoted by lowercase letters (f) 
or by adding a ’ (F’). A 180 degree turn is denoted by adding 
a superscript 2 (F2), or just the move followed by a 2 (F2). 

�	 To refer to an individual cubie or a face of a cubie, we use one 
letter for the center cubies, two letters for the edge cubies, 
and three letters for the corner cubies, which give the faces of 
the cube that the cubie is part of. The first of the three 
letters gives the side of the cubie we are referring to. For 
example, in the picture below, the red square is at FUR, 
yellow at RUF, blue at URF, and green at ULB: 
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The number of possible permutations of the squares on a Rubik’s 
cube seems daunting: 

�	 There are 8 corner pieces that can be arranged in 8! ways, 
each of which can be arranged in 3 orientations, giving 38 

possibilities for each permutation of the corner pieces. 

�	 There are 12 edge pieces which can be arranged in 12! ways. 
Each edge piece has 2 possible orientations, so each 
permutation of edge pieces has 212 arrangements. 

�	 But in the Rubik’s cube, only 1
3 of the permutations have the 

rotations of the corner cubies correct. Only 1
2 of the 

permutations have the same edge-flipping orientation as the 
original cube, and only 1

2 of these have the correct 
cubie-rearrangement parity, which will be discussed later. 
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This gives: 
(8! · 38 · 12! · 212) 

= 4.3252 · 1019 

(3 · 2 · 2) 

possible arrangements of the Rubik’s cube. 
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It is not completely known how to find the minimum distance 
between two arrangements of the cube. Of particular interest is the 
minimum number of moves from any permutation of the cube’s 
cubies back to the initial solved state. 
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Another important question is the worst possible jumbling of the 
cube, that is, the arrangement requiring the maximum number of 
minimum steps back to the solved state. This number is referred 
to as “God’s number,” and has been shown (only as recently as 
August 12 this year) to be as low as 22.1 

1Rokicki, Tom. “Twenty-Two Moves Suffice”.

http://cubezzz.homelinux.org/drupal/?q=node/view/121. August 12, 2008. 
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The lower bound on God’s number is known. Since the first twist 
of a face can happen 12 ways (there are 6 faces, each of which can 
be rotated in 2 possible directions), and the move after that can 
twist another face in 11 ways (since one of the 12 undoes the first 
move), we can find bounds on the worst possible number of moves 
away from the start state with the following “pidgeonhole” 
inequality (number of possible outcomes of rearranging must be 
greater than or equal to the number of permutations of the cube): 

12 · 11n−1 ≥ 4.3252 · 1019 

which is solved by n ≥ 19.

The solution mathod we will use in class won’t ever go over 100

moves or so, but the fastest “speedcubers” use about 60.
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By definition, a group G consists of a set of objects and a binary 
operator, *, on those objects satisfying the following four 
conditions: 

�	 The operation * is closed, so for any group elements h and g 
in G, h ∗ g is also in G. 

�	 The operation * is associative, so for any elements f , g , and 
h, (f ∗ g) ∗ h = f ∗ (g ∗ h). 

�	 There is an identity element e ∈ G such that

e ∗ g = g ∗ e = g .


�	 Every element in G has an inverse g−1 relative to the 
operation * such that g ∗ g−1 = g−1 ∗ g = e. 

Note that one of the requirements is not commutativity, and it will 
soon become clear why this is not included. 
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Keep in mind the following basic theorems about groups:


� The identity element, e, is unique. 

� If a ∗ b = e, then a = b−1 

� If a ∗ x = b ∗ x , then a = b 

� The inverse of (ab) is  b−1a−1 

� (a−1)−1 = e 
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The following are some of the many examples of groups you 
probably use everyday: 

�	 The integers form a group under addition. The identity 
element is 0, and the inverse of any integer a is its negative, 
−a. 

�	 The nonzero rational numbers form a group under 
multiplication. The identity element is 1, and the inverse of 
any x is x 

1 . 

�	 The set of n × n non-singular matrices form a group under 
multiplication. This is an example of a non-commutative 
group, or non-abelian group, as will be the Rubik group. 
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We can conveniently represent cube permutations as group 
elements. We will call the group of permutations R, for Rubik (not 
to be confused with the symbol for real numbers). 
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Our binary operator, *, will be a concatenation of sequences of 
cube moves, or rotations of a face of the cube. We will almost 
always omit the * symbol, and interpret fg as f ∗ g . This operation 
is clearly closed, since any face rotation still leaves us with a 
permutation of the cube, which is in R. Rotations are also 
associative: it does not matter how we group them, as long as the 
order in which operations are performed is conserved. The identity 
element e corresponds to not changing the cube at all. 
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�	 The inverse of a group element g is usually written as g−1 . 
We saw above that if g and h are two elements of a group, 
then (hg)−1 = g−1h−1 . 

�	 If we think of multiplying something by a group element as an 
operation on that thing, then the reversed order of the 
elements in the inverse should make sense. Think of putting 
on your shoes and socks: to put them on, you put on your 
socks first, then your shoes. But to take them off you must 
reverse the process. 
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�	 Let F be the cube move that rotates the front face clockwise. 
Then f , the inverse of F , moves the front face 
counterclockwise. Suppose there is a sequence of moves, say 
FR, then the inverse of FR is rf : to invert the operations they 
must be done in reverse order. So the inverse of an element 
essentially “undoes” it. 
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The different move sequences of cube elements can be viewed as 
permutations, or rearrangements, of the cubies. Note move 
sequences that return the same cube configuration are seen to be 
the same element of the group of permutations. So every move 
can be written as a permutation. For example, the move FFRR is 
the same as the permutation (DF UF)(DR UR)(BR FR FL)(DBR 
UFR DFL)(ULF URB DRF). 
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It is easier to discuss these permutations first using numbers. An

example of a permutation written in canonical cycle notation is:


(1)(234)


This means that 1 stays in place, and elements 2, 3, and 4 are

cycled. For example, 2 goes to 3, 3 goes to 4, and 4 goes to 2.

(234) → (423). 
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The steps in writing down combinations of permutations in 
canonical cycle notation are as follows: 

1.	 Find the smallest item in the list, and begin a cycle with it. In 
this example, we start with 1. 

2.	 Complete the first cycle by following the movements of the 
objects through the permutation. Do this until you close the 
cycle. For instance, in (1 2 4)(3 5) * (6 1 2)(3 4), we start 
with 1. 1 moves to 2 in the first permutation, and 2 moves to 
6 in the second, so 1 moves to 6. Following 6 shows that it 
moves back to 1, so 6 and 1 form one 2-cycle. 

3.	 If you have used up all the numbers, you are done. If not, 
return to step 1 to start a new cycle with the smallest unused 
element. Continuing in this manner gives (1 6)(2 3 5 4). 
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If P consists of multiple cycles of varying length, then the order of 
that permutation is n, since applying P n times returns the 
beginning state. If P consists of multiple cycles of varying length, 
then the order is the least common multiple of the lengths of the 
cycles, since that number of cycle steps will return both chains to 
their starting states. 
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Below are several examples: 

(1 2 3)(2 3 1) = (1 3 2) order 3

(2 3)(4 5 6)(3 4 5) = (2 4 3)(5 6) order 6


(1 2) order 2 
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Permutations can also be described in terms of their parity. Any 
length n cycle of a permutation can be expressed as the product of 
2-cycles.2 To convince yourself that this is true, look at the 
following examples: 

(1 2) = (1 2)

(1 2 3) = (1 2)(1 3)


(1 2 3 4) = (1 2)(1 3)(1 4)

(1 2 3 4 5) = (1 2)(1 3)(1 4)(1 5)


The pattern continues for any length cycle. 

2for proof see Davis, Tom. Permutation Groups and Rubiks Cube. May 6, 
2000. 
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Then the parity of a length n cycle is given by the number 2 cycles 
it is composed of. If n is even, an odd number of 2-cycles is 
required, and the permutation is odd, and vise versa. So odd 
permutations end up exchanging an odd number of cubies, and 
even ones an even number. 

The Mathematics of the Rubik’s Cube 24



Now we will prove an important fact about cube parity that will

help us solve the cube later:

Theorem: The cube always has even parity, or an even number of

cubies exchanged from the starting position.
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Proof (by induction on the number of face rotations, n):

Base Case: After n = 0 moves on an unsolved cube, there are no

cubies exchanged, and 0 is even.
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�	 Let P(n) : after n rotations, there are an even number of 
cubies exchanged. We assume P(n) to show 
P(n) → P(n + 1). Any sequence of moves is composed of 
single face turns. 

�	 As an example of the permutation created by a face turn, look 
at the move F = (FL FU FR FD)(FUL FUR FDR FDL) = 
(FL FU)(FL FR)(FL FD)(FUL FUR)(FUL FDR)(FUL FDL). 

�	 Since each of the length 4 chains in this permutation can be 
written as 3 2-cycles for a total of 6 2-cycles, the parity of the 
face turn is even. This fact applies to any face turn, since all 
face turns, no matter which face they are applied to, are 
essentially equivalent. 
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�	 After n moves the cube has an even number of cubies 
exchanged. Since the n + 1 move will be a face turn, there 
will be an even number of cubies flipped. There was already 
an even number exchanged, and so an even parity of cubie 
exchanges is preserved overall�. 
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Since any permutation of the Rubik’s cube has even parity, there is 
no move that will exchange a single pair of cubies. This means 
that when two cubies are exchanged, we know there must be other 
cubies exchanged as well. We will get around this problem by using 
3-cycles that will cycle 3 cubies, including the two that we want 
to exchange. 
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When talking about the cycle structure of cube moves, the 
following notation will be helpful: 

� φcorner describes the cycle structure of the corner cubies 

� φedge describes the cycle structure of the edge cubies 
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There might come a time when we want to focus first on orienting 
all the edge pieces correctly, and don’t care about the corners. In 
this case, we can deal only with φcorner and ignore whatever 
happens to the edge pieces. It is helpful to separate the two. Also 
note that any cycles in φcorner can never contain any cubies that 
are also involved in φedge since an cubie cannot be both an edge 
and a corner. We never talk about φcenter since the center of the 
cube is fixed. 
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�	 Given a group R, if  S ⊆ R is any subset of the group, then 
the subroup H generated by S is the smallest subroup of R 
that contains all the elements of S . 

�	 For instance, {F } generates a group that is a subgroup of R 
consisting of all possible different cube permutations you can 
get to by rotating the front face, {F , F 2 , F 3 F 4}. 

�	 The group generated by {F , B, U, L, R, D} is the whole group 
R. 
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Below are some examples of some generators of subroups of R:


� Any single face rotation, e.g., {F }
� Any two opposite face rotations, e.g., {LR}
� The two moves {RF }. 
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�	 We define the order of an element g as the number m, such 
that gm = e, the identity. The order of an element is also the 
size of the subgroup it generates. So we can use the notion of 
order to describe cube move sequences in terms of how many 
times you have to repeat a particular move before returning to 
the identity. 

�	 For example, the move F generates a subgroup of order 4, 
since rotating a face 4 times returns to the original state. The 
move FF generates a subroup of order 2, since repeating this 
move twice returns to the original state. Similarly, any 
sequence of moves forms a generator of a subgroup that has a 
certain finite order. 
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Since the cube can only achieve a finite number of arragnements, 
and each move jumbles the facelets, eventually at least some 
arrangements will start repeating. Thus we can prove that if the 
cube starts at the solved state, then applying one move over and 
over again will eventually recyle to the solved state again after a 
certain number of moves. 
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Theorem: If the cube starts at the solved state, and one move 
sequence P is performed successively, then eventually the cube will 
return to its solved state. 
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Proof: Let P be any cube move sequence. Then at some number 
of times m that P is applied, it recycles to the same arrangement 
k, where k < m and m is the soonest an arrangement appears for 
the second time. So Pk = Pm . Thus if we show that k must be 0, 
we have proved that the cube cycles back to P0, the solved state. 
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If k = 0, then we are done, since P0 = 1 =  Pm . Now we prove by 
contradiction that k must be 0. If k > 0: if we apply P−1 to both 
Pk and Pm we get the same thing, since both arrangements Pk 

and Pm are the same. Then Pk P−1 = PmP−1 → Pk−1 = Pm−1 . 
But this is contradictory, since we said that m is the first time that 
arrangements repeat, so therefore k must equal 0 and every move 
sequence eventually cycles through the initial state again first 
before repeating other arrangements. 
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Try repeating the move FFRR on a solved cube until you get back 
to the starting position. How many times did you repeat 
it?(hopefully 6) No matter what, that number, the size of the 

(8!·38·12!·212)subgroup generated by FFRR, must be a divisor of (3·2·2) . 
Lagrange’s Theorem tells us why. 
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Before we prove Lagrange’s Theorem, we define a coset and note 
some properties of cosets. If G is a group and H is a subgroup of 
G , then for an element g of G : 

� gH = {gh : h ∈ H} is a left coset of H in G . 

� Hg = {hg : h ∈ H} is a right coset of H in G . 
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So for instance if H is the subgroup of R generated by F, then one 
right coset is shown below: 
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Lemma: If H is a finite subgroup of a group G and H contains n 
elements then any right coset of H contains n elements. 
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Proof: For any element g of G , Hg = {hg |h ∈ H} defines the 
right coset. There is one element in the coset for every h in H, so  
the coset has n elements. 
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Lemma: Two right cosets of a subgoup H in a group G are either 
identical or disjoint. 
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Proof: Suppose Hx and Hy have an element in common. Then for 
some h1 and h2: 

h1x = h2y 

Then x = h1 
−1h2y , and some h3 = h1 

−1h2 gives x = h3y . So every 
element of Hx can be written as an element of Hy : 

hx = hh3y 

for every h in H. So  if  Hx and Hy have any element in common, 
then every element of Hx is in Hy , and a similar argument shows 
the opposite. Therefore, if they have any one element in common, 
they have every element in common and are identical �. 
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We now can say that the right cosets of a group partition the 
group, or divide it into disjoint sets, and that each of these 
partitions contains the same number of elements. 
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Lagrange’s Theorem: the size of any group H ⊆ G must be a 
divisor of the size of G . So  m|H| = |G | for some m ≥ 1 ∈ N+ . 
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Proof: The right cosets of H in G partition G . Suppose there are 
m cosets of H in G . Each one is the size of the number of 
elements in H, or  |H|. G is just the sum of all the cosets: 
G = h1G + h2G + . . . + hnG , so its size is the sum of the sizes of 
all the cosets. So we can write |G | = m|H| �. 
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Below is a list3 of some group generators and their sizes, all factors
of the size of R:

Generators Size Factorization
U 4 22

U, RR 14400 26 · 32 · 52

U, R 73483200 26 · 38 · 52

RRLL, UUDD, FFBB 8 23

Rl, Ud, Fb 768 28 · 3
RL, UD, FB 6144 211 · 3
FF, RR 12 2 · 32

FF, RR, LL 96 25 · 3
FF, BB, RR, LL, UU 663552 213 · 34

LLUU 6 2 · 3
LLUU, RRUU 48 24 · 3
LLUU, FFUU, RRUU 82944 210 · 34

LLUU, FFUU, RRUU, BBUU 331776 212 · 34

LUlu, RUru 486 2 · 35

Image courtesy of Tom Davis. Used with permission. 
3Davis, Tom Group Theory via Rubik’s Cube
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Most of the moves we use will generate relatively small subgroups. 
Play around with some of the smaller size subgroups above and 
watch the cube cycle back to its original configuration. 
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A useful way to gain insight into the structure of groups and 
subgroups is the Cayley graph. The following properties describe 
a Cayley graph of a group G : 

�	 Each g ∈ G is a vertex. 

�	 Each group generator s ∈ S is assigned a color cs . 

�	 For any g ∈ G , s ∈ S , the elements corresponding to g and gs 
are joined by a directed edge of color cs . 
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Drawing the Cayley graph for R would be ridiculous. If would have 
43 trillion vertices! Instead, we’ll look at some Cayley graphs of 
small subgroups of R. 
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The following is the Cayley graph for the subgroup generated by F : 
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Image by Tom Davis. Used with permission. 
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The moves φ = FF and ρ = RR generate the following graph 
(note that φ2 = ρ2 = 1): 
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Image by Tom Davis. Used with permission. 
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What happens when we try to draw the graph for U? Or  RRBB? 
They will have the same Cayley graphs as those shown above, 
respectively. If two groups have the same Cayley graph, they have 
essentially the same structure, and are called isomorphic. Two  
isomorphic groups will have the same order and same effect on the 
cube. For instance, performing FFRR has the same effect as 
rotating the cube so that the L face is now in front and then 
performing RRBB. 
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We first define some properties of cube group elements, and then 
use these properties and what we learned above to develop some 
macros or combinations of cube moves that will help us 
accomplish specific cubie rearrangements that will enable us to 
solve the cube. 
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The move sequence operations on a Rubik’s cube are pretty 
obviously not commutative. For example, rotate the front face 
(F ), then rotate the right face (R) to make a move FR. This is 
clearly not the same as rotating the right face followed by the front 
face, or RF . One useful tool to describe the relative commutativity 
of a sequence of operations is the commutator, PMP−1M−1 , 
denoted [P.M], where P and M are two cube moves. If P and M 
are commutative, then their commutator is the identity, since the 
terms can be rearranged so that P cancels P−1 and same with M. 
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Let the support of an operator be all the cubies changed by it. 
Then two operations are commutative if either they are the same 
operation or if supp(P) ∩ supp(M) = ∅, that is, if each move 
affects completely different sets of cubies. 
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If the commutator is not the identity, then we can measure the 
“relative commutativity” by the number of cubies changed by 
applying the commutator. Looking at the intersection of the 
supports of the two operations gives insight into this measure. 
Useful pairs of moves have only a small number of cubies changed 
in common, and you will see macros involving commutators come 
up again and again. 
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A useful theorem about commutators that we will not prove but

will make use of is the following:

If supp(g)∩supp(h) consists of a single cubie, then [g , h] is a 

3-cycle.
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Below are some useful building blocks for commutators that can be 
used to build macros: 

� FUDLLUUDDRU flips exactly one edge cubie on the top face 

� rDRFDf twists one cubie on a face 

� FF swaps a par of edges in a slice 

� rDR cycles three corners 
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Let M be some macro that performs a cube operation, say a 
three-cycle of edge pieces. Then we say for some cube move P, 
PMP−1 is the conjugation of M by P. Conjugating a group 
element is another very useful tool that will help us describe and 
build useful macros. 
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First we will introduce a couple useful definitions: An equivalence 
relation is any relation ∼ between elements that are: 

� Reflexive: x ∼ x


� Symmetric: If x ∼ y then y ∼ x


� Transitive: If x ∼ y and y ∼ z then x ∼ z 
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We will let the relation ∼ be conjugacy. So if for some g ∈ G , 
x ∼ y , then gxg−1 = y Here we prove that conjugacy is an 
equivalence relation: 

�	 Reflexive: gxg−1 = x if g = 1,  so  x ∼ x 

�	 Symmetric: If x ∼ y , then gxg−1 = y , so multiplying each 
side by g on the right and g−1 on the left gives x = g−1yg 

�	 Transitive: If x ∼ y and y ∼ z , then y = gxg−1 and 
z = hyh−1, so  z = hgxg−1h−1 = (hg)x(hg)−1, so  x ∼ z 
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An equivalence class c(x), x ∈ G is the set of all y ∈ G : y ∼ x .

We can partition G into disjoint equivalence classes, or conjugacy

classes.

We will not give a formal proof here, but two permutation

elements of R are conjugates if they have the same cycle

structure. The following example should make this more clear.
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In solving a cube, one straightforward approach is to solve it layer 
by layer. Once you get to the third layer, some of the edge pieces 
might be flipped the wrong way, as in the following picture: 
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We want to flip these pieces correctly, but leave the bottom two 
layers intact. We can use conjugation to do so. Consider the move 
consisting of the commutator g = RUru. Applying g to the cube 
has the effect shown below: 
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You can see that 7 cubes are affected, 2 of which are not in the 
top layer, but are instead in the R layer. We can fix this by 
performing a rotation before we use the macro that will put top 
layer cubies in all the positions affected by the macro, so that only 
top layer cubies are rearranged. 
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Now take the conjugate of g by F to get the move FRUruf: 
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By first performing F and then reversing this action with f after the 
macro is performed, we ensure that only the top row pieces are 
affected. We can use our permutation notation to describe what 
this macro does. First look at g before conjugation. φcorner is of 
the form (12)(34), since it switches the top back corners and the 
upper right corners. φedge is of the form (123), since it 3-cycles the 
edge pieces FR, UR, and UB. 
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Then for the conjugated macro, φcorner has the form (12)(34), 
since it switches two pairs of corners: the top front and the top 
back. φedge is of the form (123), since it leaves one edge piece in 
place and 3-cycles the other 3 edge pieces. So the original macro 
and its conjugate have the same cycle structures. The only 
difference between a macro and its conjugate are the actual pieces 
involved in the cycles. Once you find a sequence of moves that 
performs the operation you want, e.g., cycling 3 pieces, flipping 
pieces, etc., than you can apply it to the desired pieces by 
conjugating it with the appropriate cube move. 
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The ScrewDriver Method: We won’t be going over this one in 
class, and in fact you should never need it again. It involves 
turning one face 45 degrees, prying out the edge piece sticking out, 
and disassembling the cube using a screwdriver. Not much math 
here so we’ll move on. 
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The Bottom up method: This is one of the most intuitive, but 
probably one of the slowest, ways to solve the cube. It averages 
about 100 moves per solution. 
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The First Layer 
This first layer must be done by inspection. There is usually no set 
algorithm to follow. It is helpful to focus on getting a cross first 
with the edge pieces correctly in place, and then solving the 
corners one by one. 
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The Second Layer 
Now rotate the bottom (solved) layer so that its edges on the 
other faces are paired with the correct center pieces. Your cube 
should look as follows: 
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For this layer we only have to solve the four middle layer edge 
pieces. If an edge piece is in the top layer, use the following 
macros: 
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If an edge pieces is not in the top layer, but is not oriented 
correctly, use the following to put the piece in the top layer and 
then proceed as above: 

The second layer should now be solved.
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The Third Layer

We will do this layer in 3 steps.
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Step 1: Flip the edges to form a cross on the top: To flip a top 
layer edge correctly, use this macro: 
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Repeat until all the edge pieces form a cross on the top: 
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Step 2: Position the top layer edges correctly: Now position the 
top layer so that one of the edges is solved. If all the edges are 
solved, move on to the next step. If not, use the following 
algorithms to permute the edges correctly: 
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If none of these work, apply one of them until you get to a position 
where one of these will work, then proceed. 
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Step 3: Flip the top layer corners: For each corner that does not 
have the correct color on the top layer, position it at UBR and 
perform RDrd repreatedly until it is oriented with the correct color 
on top. Then, without rotating the cube, position the next 
unsolved corner at UBR and repeat the process. The bottom two 
layers will appear to be a mess, but they will be correct once all 
the four corners are facing the correct direction. 
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Position the top layer corners correctly: Now the top layer should 
have all the same color faces, but the corners might not be 
oriented correctly. Position one corner correctly, and then 
determine whether the others are solved, need to be rotated 
clockwise, or need to rotated counterclockwise, and then apply the 
following (let x = rD2R): 
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You should end with a solved cube! 
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