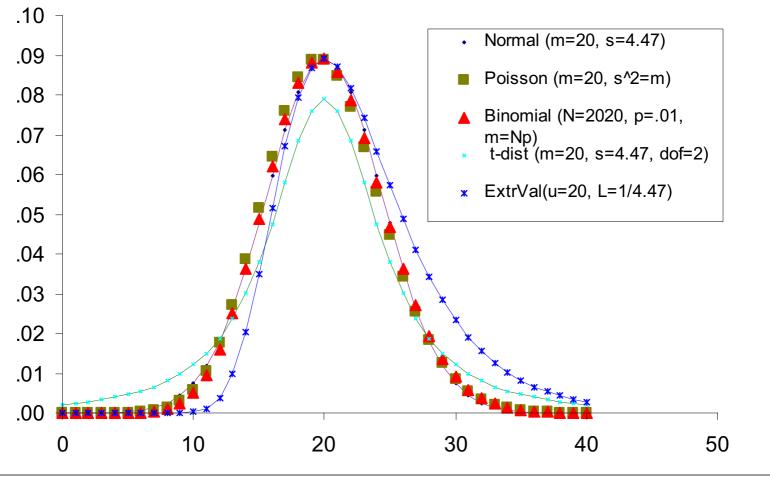
Harvard-MIT Division of Health Sciences and Technology HST.508: Genomics and Computational Biology


DNA2: Last week's take home lessons

Comparing types of alignments & algorithms
Dynamic programming (DP)
Multi-sequence alignment
Space-time-accuracy tradeoffs
Finding genes -- motif profiles
Hidden Markov Model (HMM) for CpG Islands

RNA1: Today's story & goals

- **#** Integration with previous topics (HMM & DP for **RNA structure**)
- Goals of molecular quantitation (maximal fold-changes, clustering & classification of genes & conditions/cell types, causality)
- Genomics-grade measures of RNA and protein and how we choose and integrate (SAGE, oligo-arrays, gene-arrays)
- Sources of random and systematic errors (reproducibility of RNA source(s), biases in labeling, non-polyA RNAs, effects of array geometry, cross-talk).
- **Interpretation** issues (splicing, 5' & 3' ends, gene families, small RNAs, antisense, apparent absence of RNA).
- **Time series data:** causality, mRNA decay, time-warping

Discrete & continuous bell-curves

gggatttagctcagtt gggagaggggcgcagact gaa Primary gat ttg Structure gag gtcctgtgttcgatcc acagaattcgcacca

Non-watson-crick bps

See (http://www.imb-jena.de/IMAGE_BPDIR.html)

Modified bases & bps in RNA

See http://info.bio.cmu.edu/Courses/BiochemMols/tRNA_Tour/tRNA_Tour.html

ref

Covariance

see Durbin et al p. 266-8.

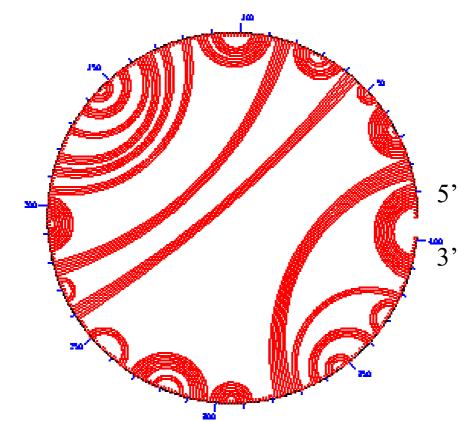
Mutual Information

ACUUAU $M_{1,6} = \sum = fAU \log_2[fAU/(fA*fU)]...$ CCUUAG x_1x_6 GCUUGC $=4*.25\log_2[.25/(.25*.25)]=2$ UCUUGA i=1 j=6 $M_{1,2} = 4*.25\log_2[.25/(.25*1)]=0$

$$\mathbf{M}_{ij} = \sum_{\mathbf{x}_i \mathbf{x}_j} \mathbf{M}_{ij} = \sum_{\mathbf{x}_i \mathbf{x}_j} \mathbf{M}_{ij} \mathbf{M}_{ij} = \sum_{\mathbf{x}_i \mathbf{x}_j} \mathbf{M}_{ij} \mathbf{M}_{ij} \mathbf{M}_{ij} = \mathbf{M}_{ij} \mathbf{$$

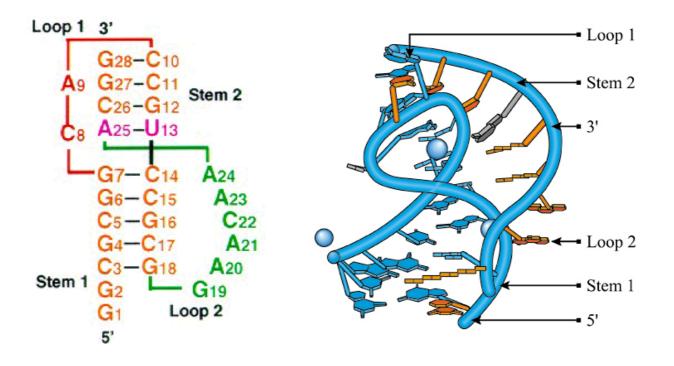
See Shannon entropy, multinomial <u>Grendar</u> $\pi(\mathbf{n}|\mathbf{q}) = \frac{n!}{n_1! n_2! \dots n_m!} \prod_{i=1}^m q_i^{n_i}$

RNA secondary structure prediction


Mathews DH, Sabina J, Zuker M, Turner DH J Mol Biol 1999 May 21;288(5):911-40

Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure.

Each set of 750 generated structures contains one structure that, on average, has 86 % of known base-pairs.


Stacked bp & ss

Initial 1981 O(N²) DP methods: Circular Representation of RNA Structure

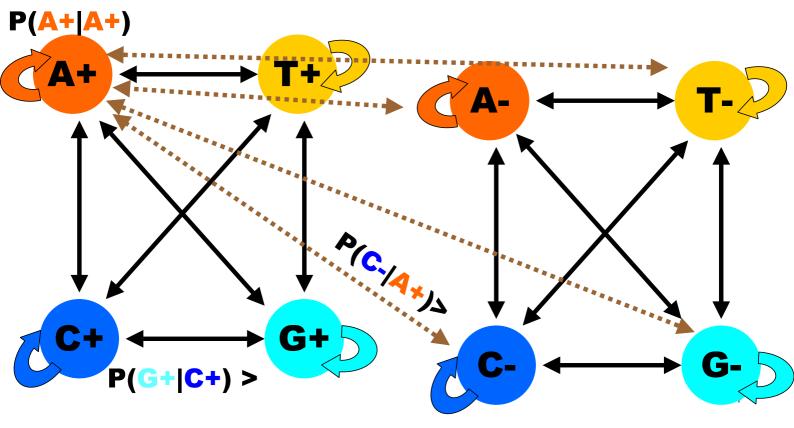
Did not handle pseudoknots

RNA pseudoknots, important biologically, but challenging for structure searches

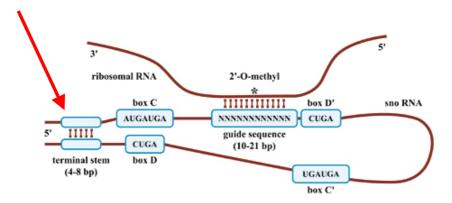
Dynamic programming finally handles RNA pseudoknots too.

Rivas E, Eddy SR J Mol Biol 1999 Feb 5;285(5):2053-68 A dynamic programming algorithm for RNA structure prediction including

pseudoknots. (ref)

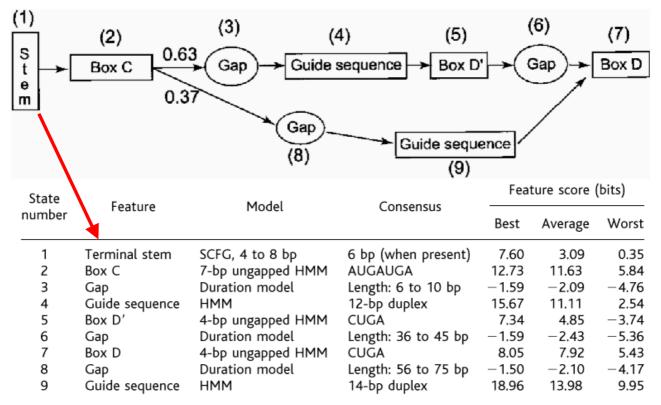

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9925784&dopt=Abstract)

Worst case complexity of $O(N^6)$ in time and $O(N^4)$ in memory space.


Bioinformatics 2000 Apr;16(4):334-40 (ref) (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10869031&dopt=Abstract)

CpG Island + in a ocean of -First order Hidden Markov Model

MM=16, HMM= 64 transition probabilities (adjacent bp)



Small nucleolar (sno)RNA structure & function

See Lowe et al. Science (ref)

SnoRNA Search

Performance of RNA-fold matching algorithms

Algorithm	CPU bp/sec	True pos.	False pos.
TRNASCAN'91 TRNASCAN-SE '97	400 30,000	95.1% 99.5%	0.4x10 ⁻⁶ <7x10 ⁻¹¹
SnoRNAs'99		>93%	<10-7

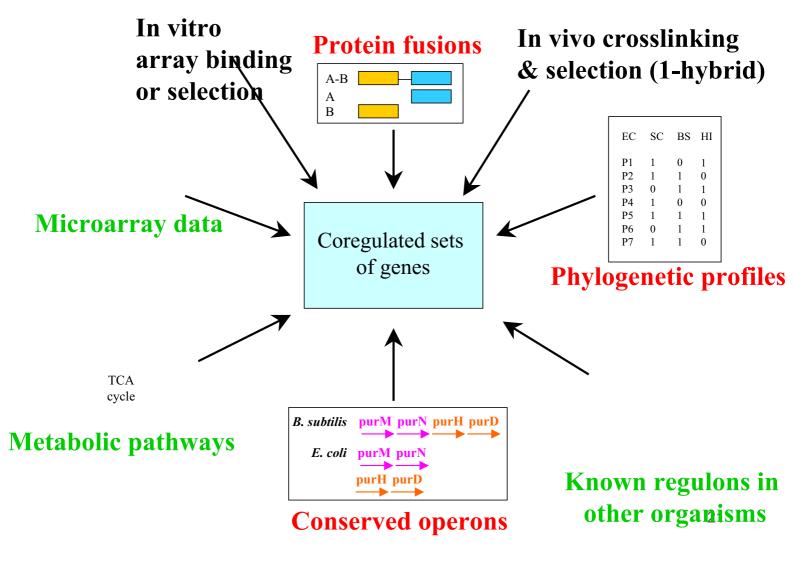
(See p. 258, 297 of Durbin et al.; Lowe et al 1999)

Putative Sno RNA gene disruption effects on rRNA modification

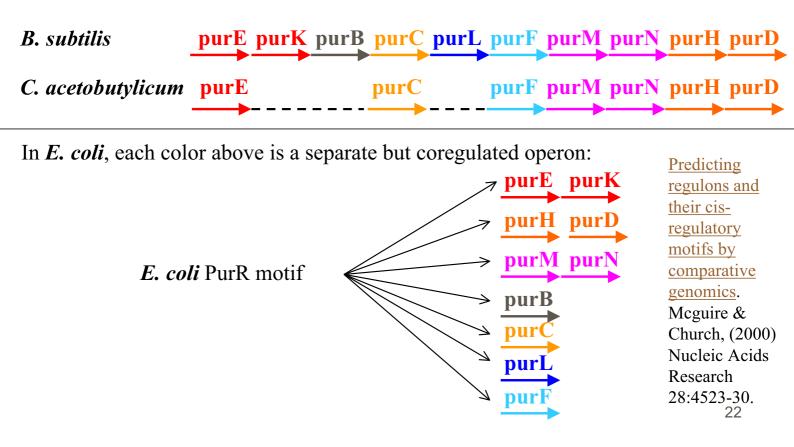
See Lowe et al. Science 1999 283:1168-71 (ref) (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10024243&dopt=Abstract)

Primer extension pauses at 2'O-Me positions forming bands at low dNTP.

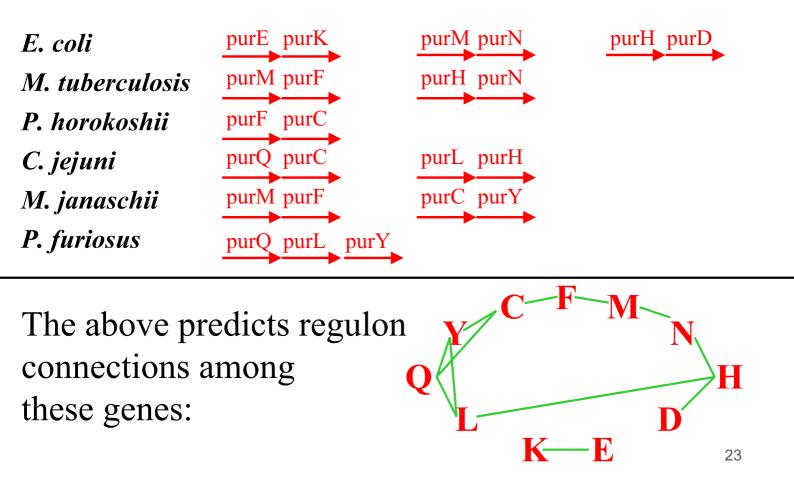
RNA1: Today's story & goals


- **#** Integration with previous topics (HMM & DP for **RNA structure**)
- Goals of molecular quantitation (maximal fold-changes, clustering & classification of genes & conditions/cell types, causality)
- Genomics-grade measures of RNA and protein and how we choose and integrate (SAGE, oligo-arrays, gene-arrays)
- Sources of random and systematic errors (reproducibility of RNA source(s), biases in labeling, non-polyA RNAs, effects of array geometry, cross-talk).
- **Interpretation** issues (splicing, 5' & 3' ends, gene families, small RNAs, antisense, apparent absence of RNA).
- **Time series data:** causality, mRNA decay

RNA (array) & Protein/metabolite (MS) quantitation


RNA measures are closer to genomic regulatory motifs & transcriptional control

Protein/metabolite measures are closer to Flux & growth phenotypes.



Check regulons from conserved operons (chromosomal proximity)

Predicting the PurR regulon by piecing together smaller operons

(Whole genome) RNA quantitation objectives

RNAs showing maximum change minimum change detectable/meaningful

RNA absolute levels (compare protein levels) minimum amount detectable/meaningful

Network -- direct causality-- motifs

Classify (e.g. stress, drug effects, cancers)

(Sub)cellular inhomogeneity

Dissected tissues have mixed cell types.

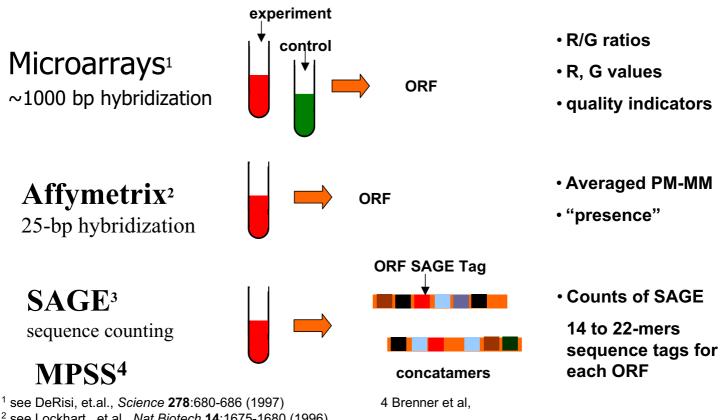
Cell-cycle differences in expression.

XIST RNA localized on inactive X-chromosome

(see figure) (http://www.med.ic.ac.uk/dc/Brochure/XI/XI.html)

Fluorescent in situ hybridization (FISH)

•Time resolution: 1msec


- •Sensitivity: 1 molecule
- •Multiplicity: >24
- •Space: 10 nm (3-dimensional, in vivo)

10 nm accuracy with far-field optics energy-transfer fluorescent beads nanocrystal quantum dots, closed-loop piezo-scanner (ref) (http://www.pnas.org/cgi/content/full/97/17/9461)

RNA1: Today's story & goals

- **K** Integration with previous topics (HMM & DP for **RNA structure**)
- Goals of molecular quantitation (maximal fold-changes, clustering & classification of genes & conditions/cell types, causality)
- **#** Genomics-grade **measures** of RNA and protein and how we choose and integrate (SAGE, oligo-arrays, gene-arrays)
- Sources of random and systematic errors (reproducibility of RNA source(s), biases in labeling, non-polyA RNAs, effects of array geometry, cross-talk).
- **Interpretation** issues (splicing, 5' & 3' ends, gene families, small RNAs, antisense, apparent absence of RNA).
- **Time series data:** causality, mRNA decay, time-warping

Steady-state population-average RNA quantitation methodology

² see Lockhart, et.al., Nat Biotech 14:1675-1680 (1996)

³ see Velculescu, et.al, Serial Analysis of Gene Expression, Science 270:484-487 (1995)

Most RNAs < 1 molecule per cell.

See Yeast RNA

25-mer array in Wodicka, Lockhart, et al. (1997) Nature Biotech 15:1359-67

Reproducibility confidence intervals to find significant deviations.

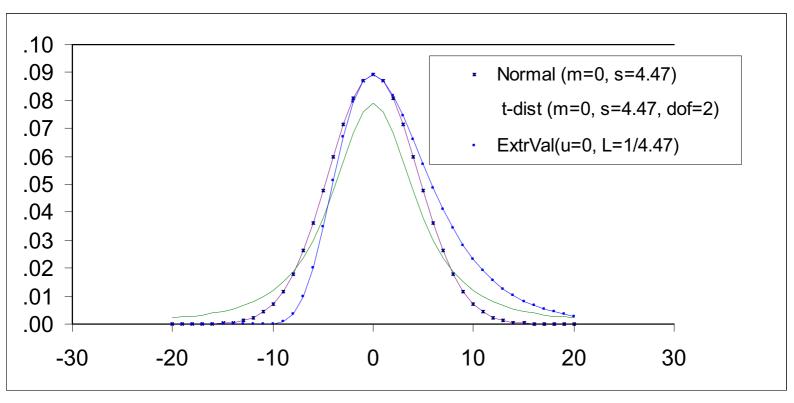
(ref) (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9415887&dopt=Abstract)

Microarray data analyses

 $(\underline{web})(http://linkage.rockefeller.edu/wli/microarray/soft.html)$

AFM AMADA Churchill CLUSFAVOR CLUSFAVOR CLUSTER, D-CHIP GENE-CLUSTER J-EXPRESS PAGE PLAID SAM SMA SVDMAN TREE-ARRANGE & TREEPS VERA & SAM XCLUSTER ArrayTools ARRAY-VIEWER F-SCAN P-SCAN SCAN-ALYZE GENEX MAPS

Statistical models for repeated array data


Tusher, Tibshirani and Chu (2001) Significance analysis of microarrays applied to the ionizing radiation response. <u>PNAS</u> <u>98(9):5116-21.</u> (http://www-stat.stanford.edu/~tibs/SAM/pnassam.pdf)

Selinger, et al. (2000) RNA expression analysis using a 30 base pair resolution *Escherichia coli* genome array. <u>Nature</u> <u>Biotech. 18, 1262-7. (http://arep.med.harvard.edu/pdf/Selinger00.pdf)</u>

Li & Wong (2001) Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. <u>Genome Biol 2(8):0032</u> (http://genomebiology.com/2001/2/8/research/0032/)

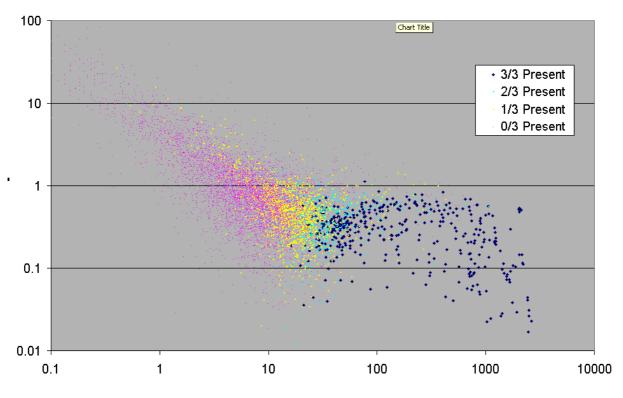
Kuo et al. (2002) Analysis of matched mRNA measurements from two different microarray technologies. Bioinformatics 18(3):405-12

"Significant" distributions

t-test t = (Mean / SD) * sqrt(N). Degrees of freedom = N-1 *H0:* The mean value of the difference =0. If difference distribution is not normal, use the <u>Wilcoxon Matched-Pairs Signed-Ranks Test</u>. 32 (http://fonsg3.let.uva.nl/Service/Statistics/Signed_Rank_Test.html?values=)

Independent Experiments

See Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx. Livesay, et al. (2000) Current Biology


RNA quantitation

Is less than a 2-fold RNA-ratio ever important? Yes; 1.5-fold in trisomies.

Why oligonucleotides rather than cDNAs? Alternative splicing, 5' & 3' ends; gene families.

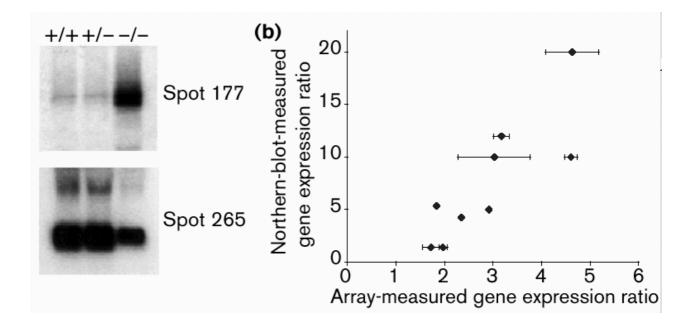
What about using a subset of the genome or ratios to a variety of control RNAs?

It makes trouble for later (meta) analyses.

E.coli r,t,mRNA: Y=Coef. of Variation, X=~mRNA/cell

(Whole genome) RNA quantitation methods

Method

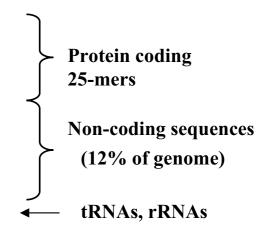

Genes immobilized labeled RNA RNAs immobilized labeled genes-Northern gel blot QRT-PCR Reporter constructs Fluorescent In Situ Hybridization Tag counting (SAGE) Differential display & subtraction

Advantages

Chip manufacture

RNA sizes Sensitivity 1e-10 No crosshybridization Spatial relations Gene discovery "Selective" discovery

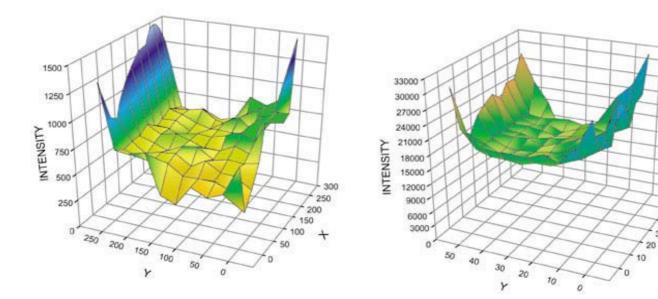
Microarray to Northern


Genomic oligonucleotide microarrays

295,936 oligonucleotides (including controls) Intergenic regions: ~6bp spacing Genes: ~70 bp spacing Not polyA (or 3' end) biased

Strengths: Gene family paralogs, RNA fine structure (adjacent promoters), untranslated & antisense RNAs, DNA-protein interactions.

E. coli 25-mer array


Affymetrix: Mei, Gentalen, Johansen, Lockhart(Novartis Inst) HMS: Church, Bulyk, Cheung, Tavazoie, Petti, Selinger

Random & Systematic Errors in RNA quantitation

- Secondary structure
- Position on array (mixing, scattering)
- Amount of target per spot
- Cross-hybridization
- Unanticipated transcripts

Spatial Variation in Control Intensity

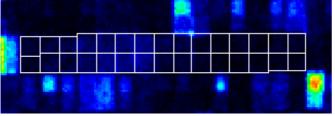
Experiment 1

experiment 2

See Selinger et al

40

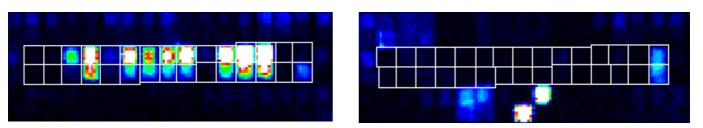
60


50

40

Detection of Antisense and Untranslated RNAs

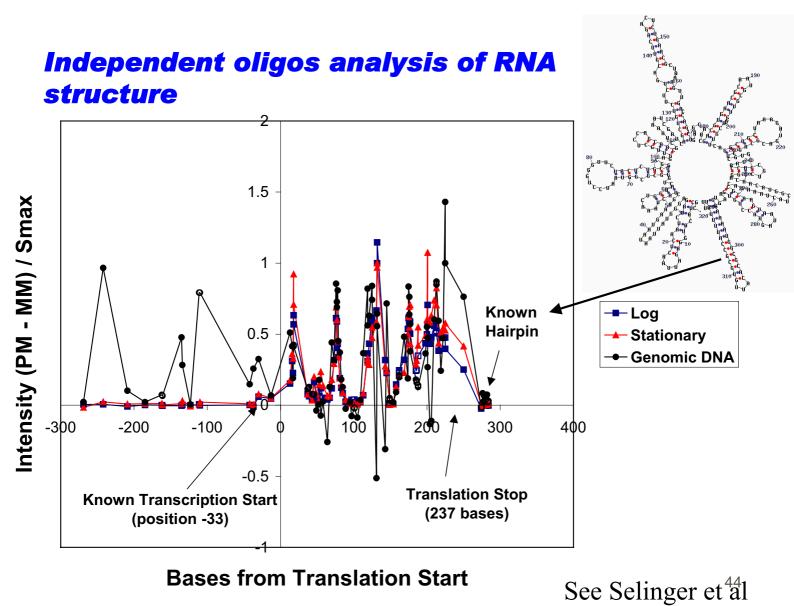
Expression Chip

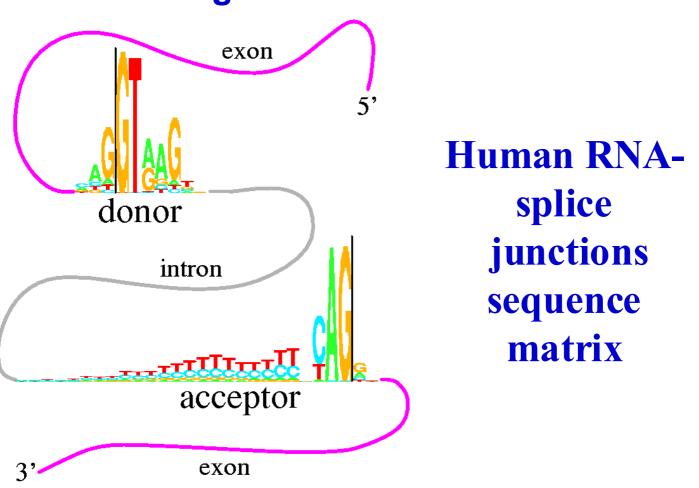

Reverse Complement Chip

b0671 - ORF of unknown function, tiled in the opposite orientation

Crick Strand

Watson Strand (same chip)


"intergenic region 1725" - is actually a small untranslated RNA (csrB)


Mapping deviations from expected repeat ratios

See Li & Wong

RNA1: Today's story & goals

- **#** Integration with previous topics (HMM & DP for **RNA structure**)
- Goals of molecular quantitation (maximal fold-changes, clustering & classification of genes & conditions/cell types, causality)
- Genomics-grade measures of RNA and protein and how we choose and integrate (SAGE, oligo-arrays, gene-arrays)
- Sources of random and systematic errors (reproducibility of RNA source(s), biases in labeling, non-polyA RNAs, effects of array geometry, cross-talk).
- **Interpretation** issues (splicing, 5' & 3' ends, gene families, small RNAs, antisense, apparent absence of RNA).
- **Time series data:** causality, mRNA decay, time-warping

Predicting RNA-RNA interactions

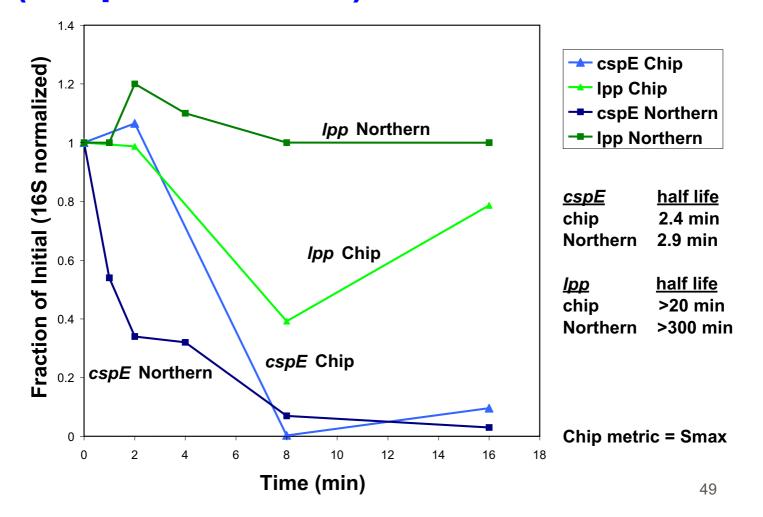
http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html 45

Experimental annotation of the human genome using microarray technology.

See Shoemaker, et al. (2001) Nature 409:922-7.

(http://www.nature.com/cgitaf/DynaPage.taf?file=/nature/journal/v409/n6822/full/409922a0_fs.html&content_filetype=pdf)

RNA1: Today's story & goals

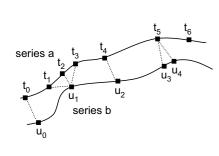

- **HIME STATE INTEGRATION WITH PREVIOUS TOPICS (HMM & DP for RNA structure**)
- Goals of molecular quantitation (maximal fold-changes, clustering & classification of genes & conditions/cell types, causality)
- Genomics-grade measures of RNA and protein and how we choose and integrate (SAGE, oligo-arrays, gene-arrays)
- Sources of random and systematic errors (reproducibility of RNA source(s), biases in labeling, non-polyA RNAs, effects of array geometry, cross-talk).
- **Interpretation** issues (splicing, 5' & 3' ends, gene families, small RNAs, antisense, apparent absence of RNA).
- **# Time series data:** causality, mRNA decay, time-warping

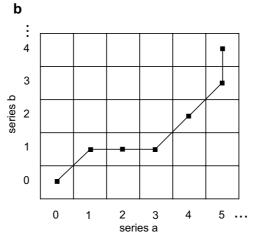
Time courses

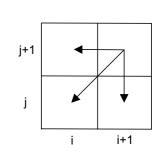
•To discriminate primary vs secondary effects we need conditional gene knockouts .

•Conditional control via transcription/translation is slow (>60 sec up & much longer for down regulation)

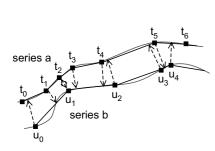
•Chemical knockouts can be more specific than temperature (ts-mutants).

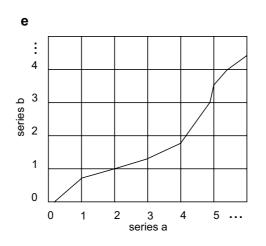


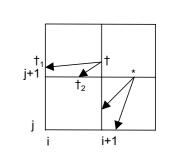

Beyond steady state: mRNA turnover rates (rifampicin time-course)


TimeWarp: pairs of expression series, discrete or interpolative

d







С

f

See Aach & Church 50

TimeWarp: cell-cycle experiments TimeWarp: alignment example

RNA1: Today's story & goals

- **K** Integration with previous topics (HMM & DP for **RNA structure**)
- Goals of molecular quantitation (maximal fold-changes, clustering & classification of genes & conditions/cell types, causality)
- Genomics-grade measures of RNA and protein and how we choose and integrate (SAGE, oligo-arrays, gene-arrays)
- Sources of random and systematic errors (reproducibility of RNA source(s), biases in labeling, non-polyA RNAs, effects of array geometry, cross-talk).
- **Interpretation** issues (splicing, 5' & 3' ends, gene families, small RNAs, antisense, apparent absence of RNA).
- **Time series data:** causality, mRNA decay, time-warping