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Problem 1 
Fisher-Wright population with selection and mutation 
Mutation Rate u1: A1 -> A2 u2: A2 -> A1 
Selection w11 =  1 w12 = 1 - s/2 w22 = 1 - s 

A) Obtain M(p) due to mutation 
Model the number of transitions due to mutation as binomial random variables U1 and U2. 
K ~ 2N pk 1− p2N−k U 1 ~ Kj u1 

j 1−u1
K − j U 2 ~ 2N−K u2 

j 1−u2
2N −K − j 

k j

K
p = p ' = K ' K ' = K −U 1U 22N 2N 

E [ K ' ] = E [ K −U 1U 2] = E [ K ]E [ E [U 1∣K ]]E [ E [U 2∣K ]]

= 2Np−E [u1 K ]E [u22N−K ] = 2Np−2Npu12N 1− p u2


M  p  = 1 E [ K ' ]−E [ K ] = 1− p u2− pu12N 

B) Obtain M(p) due to selection 

M  p = 
p 1− p d   2 w w = w11 p  w 12 2p 1− p   w22 1− p 2 

22 w dp = p  2p 1− p 1−s / 2  1− p 2 1−s

w
d
dp 
 = 2p  2 1−s /2 − 4p 1−s /2 − 21− p1−s = s 

sp1− pM  p  = 
sp1− p = 

2 1−ssp 
2 p22p 1− p1−s /2 1− p2 1−s 


C) Obtain V(p) after one generation 
Var K '  = E [Var  K '∣K ]  Var  E [ K '∣K ]


= E [Var  K −U 1U 2∣K ]  Var E [K −U 1U 2∣K ]

= E [Var U 1∣K Var U 2∣K ]  Var  K −u1 K u2 2N−K 

= E [ Ku11−u12N−K  u21−u2]  Var 2Nu21−u1−u2 K 

= 2Npu11−u1  2N 1− p u21−u2  2Np1− p 1−u1u2

2 

K 1V  p  = Var   = [ pu1 1−u1  1− p u21−u2  p 1− p1−u1u2
2 ]2N 2N 

D) Assuming no drift, find the steady state for mutation alone and for selection alone.

Using the Kolmogorov forward equation with V(p) = 0, steady state is achieved when M(p) = 0.


Mutation: M  p  = 1− pu2− pu1 = 0 therefore pss = 
u2 

u1u2 

sp 1− p
Selection: M  p  = 

21−ssp
 0 for 0< p < 1.   pss = 1 since zero is unstable. 
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Problem 2 
Obtain an expression for the mean time of fixation or loss starting with the equation below. 
t  x = 1  ∑t  x  x Pr  x  

 x 

d t  x  1 d 2 t  x  
= 1  ∑[t  x   x   x2]Pr  x dx 2 dx 2 

 x 

= 1  t  x ∑ Pr  x   
d t  x ∑ xPr  x   1 d 2 t  x ∑ x2 Pr  x  

 x dx  x 2 dx2 
 x 

d t  x 1 d 2 t  x  
= 1  t  x  ⋅ 1  ⋅ 0  ⋅ Var  x dx 2 dx2 

d 2 t  x  2 4N 1 1 = − = −  
dx 2 Var  x  x 1−x  

= −4N[ x 1−x ] 
t  x = −4N [ x ln x  1−x ln 1−x   ax  b ] 

Use the simple boundary conditions below to solve for integration constants a and b.  The time to 
fixation or loss is zero if  the allele is already fixed or lost. 
t 0 = 0 Therefore b = 0 
t 1 = 0 Therefore a = 0 

Substitution in these values gives our final result. 
t  x = −4N [ x ln x  1−x ln 1−x ] 

Problem 3 
For two random alleles from the population, there is a 1 in 4 chance both came from males in the 
previous generation, in which case the probability of being identical is simply the standard recurrence 
relation for F but using the number of male alleles 2Nm. The situation is similar if both alleles came 
from females, but this time 2Nf must be used.  There is also a 1 in 2 chance the alleles came from 
different genders, in which case they could not have come from the same individual and the probability 
of being identical by descent is simply the  homozygosity of the overall population in the previous 
generation. 

1 1 1 1 1 1F t1 = 4 [ 2N 1− 2N F t ]  2 Ft  
1 1−4 [ 2N f 2N f 

F t ]m m 

1 1 1 1 1 1  4− Ft = 
4 [ 2Nm 2N f ] 4 [ 2Nm 

−
2N f ]

Comparing this to the general formula using effective population size 
1 1 =  [1− F tF t1 2N 2N ]e e 

We get the following formula for Ne. 
1 1 1 4Nm N f 

2N = 4 [ 2N 2N f ] Which simplifies to N e = 
NmN f
e m


2 
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Problem 4 
A) Region A is likely a protein coding region.  If position 1 in the sequence corresponds to the start of 
a translated codon, all three sites would be in wobble positions, giving them a high probability of being 
synonymous mutations.  The mutations in Region B are evenly spread across the three codon positions 
and many would be non-synonymous.  Region A also has 1/3 as many segregating sites as Region B, 
suggesting that the non-synonymous mutations may have been selected against and eliminated. 

B) Tajima's D score is an appropriate metric to test for selection with this type of SNP data, assuming 
that the population has been stable over the time period of interest or can be modeled by an effective 
population.  The D scores for the two regions are shown below. 

Region A: S = 3 a1 = 2.593  = 1.157  = 0.750 D = −1.236 
Region B: S = 9 a1 = 2.593  = 3.471  = 3.357 D = −0.1483 

C) Region A shows a moderate excess of rare alleles, which likely indicates purifying selection in this 
case, but it could also result from a recent population increase.  Region B is quite consistent with the 
neutral model and shows no evidence of selection. 

Problem 5 
Region A: 25% nucleotide difference between species 
Region B: 5% nucleotide difference between species 

A) This scenario is consistent with the neutral theory since the mutation rate is not necessarily the 
same in the two regions.  It is well known that certain regions of the genome are more prone to 
mutation than others.  If the mutation rates were known to be the same in the two regions, the results 
would suggest a selection process is taking place. 

B) Calculate the expected number of segregating sites in a sample of 5 alleles given that 20 sites are 
observed in a sample of 10 alleles. 

The number of segregating sites in the original set of samples can be used to estimate theta.  Since it is 
a constant and does not depend on the number of samples,  it can then be used to calculate the expected 
number of segregating sites in the sample of 5 alleles. 

9 

 = 4Nu E [S ] = a  a10 = ∑ 1 
i = 2.828968n 

i=1 
4 

S10 = 20 = a10   = 7.0697 a5 = ∑ 1 
i = 2.083333 

i=1 

S5 = a5  = 14.73 

3 



Ken Roach 
HST.508 PS#1 

Problem 6 
A simple Matlab script was used to calculate the D values for the provided SNP database.  The script 
will be attached at the end of the problem set.  The p values were calculated for a double sided test and 
assume that the D values follow a normal distribution. 

A) Compare the obtained scores for African and European populations. 
African: S = 24189 a1 = 3.7343  = 6477.5  = 4952.2 

D = −0.9565 p = 0.3388 

European:	 S = 14767 a1 = 3.6908  = 4001.0  = 3831.7 
D = −0.1732 p = 0.8625 

The African population has a much more negative D value than the European population, indicating a

greater abundance of rare alleles.  This could indicate either stronger selection pressures or a recent

population increase.  However, neither D value is statistically significant, at least with the normal

approximation being used.


B) Repeat using only non-synonymous mutations.

African: S = 498 a1 = 3.7343  = 133.36  = 89.97


D = −1.3154 p = 0.1884 

European:	 S = 347 a1 = 3.6908  = 94.02  = 69.52 
D = −1.0593 p = 0.2895 

Using only non-synonymous mutations, the D values were more negative for both populations.  This

suggests that non-synonymous mutations are under stronger selective pressure than synonymous or

non-coding mutations.  This makes intuitive sense, since changing even a single amino acid may have a

significant effect on the function of the protein.  However, the p values are not statistically significant,

so the neutral model good still potentially hold.


C) Repeat using only synonymous mutations.

African: S = 506 a1 = 3.7343  = 135.50  = 104.96


D = −0.9112 p = 0.3622 

European:	 S = 304 a1 = 3.6908  = 82.37  = 71.92 
D = −0.5151 p = 0.6065 

The D values are quite a bit less negative for the synonymous mutations than they were for the non-
synonymous mutations.  The D value for synonymous mutations in the African population is also very 
close to the value for all mutations in that population.  Since selection is expected to be minimal for 
synonymous mutations, this suggests that other mechanisms like population change are likely to be 
responsible for the observed values. 
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% HST.508 PS1

load SNPData.mat;


% Set up constants

nafr = 24;

neur = 23;


% Calculate D for African population

[Safr,a1afr,thetaafr,piafr,Dafr,pvalafr] = tajima(nafr,x5,x9)


% Calculate D for European population

[Seur,a1eur,thetaeur,pieur,Deur,pvaleur] = tajima(neur,x6,x10)


% Include only nonsynonymous mutations

nonsynon = find(strcmp(x3,'NON-SYN '));

f1afrnon = x5(nonsynon);

f2afrnon = x9(nonsynon);

f1eurnon = x6(nonsynon);

f2eurnon = x10(nonsynon);


[Safrnon,a1afrnon,thetaafrnon,piafrnon,Dafrnon,pvalafrnon] = tajima(nafr,f1afrnon,f2afrnon)

[Seurnon,a1eurnon,thetaeurnon,pieurnon,Deurnon,pvaleurnon] = tajima(neur,f1eurnon,f2eurnon)


% Include only synonymous mutations

synon = find(strcmp(x3,'SYNON '));

f1afrsyn = x5(synon);

f2afrsyn = x9(synon);

f1eursyn = x6(synon);

f2eursyn = x10(synon);


[Safrsyn,a1afrsyn,thetaafrsyn,piafrsyn,Dafrsyn,pvalafrsyn] = tajima(nafr,f1afrsyn,f2afrsyn)

[Seursyn,a1eursyn,thetaeursyn,pieursyn,Deursyn,pvaleursyn] = tajima(neur,f1eursyn,f2eursyn)


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


% Calculate Tajima's D based on SNP frequencies

function [S,a1,theta,pi,D,pval] = tajima(n,f1,f2)


% Calculate pi using frequencies of alternative alleles

pi = sum(n^2 .* f1 .* f2) / (n*(n-1)/2);


% Only count sites where there is actual diversity in the population

S = sum((f1~=0).*(f1~=1));


% Below calculations are based on handout

a1 = sum(1./(1:(n-1)));

a2 = sum((1./(1:(n-1))).^2);

b1 = (n+1) / (3*(n-1));

b2 = 2*(n^2+n+3) / (9*n*(n-1));

c1 = b1 - 1/a1;

c2 = b2 - (n+2)/(a1*n) + a2/(a1^2);

e1 = c1 / a1;

e2 = c2 / (a1^2+a2);

theta = S/a1;

D = (pi - S/a1) / sqrt(e1*S + e2*S*(S-1));


% P-value for a double sided test assuming a normal distribution for D

pval = 2*normcdf(-abs(D));
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