Harvard-MIT Division of Health Sciences and Technology HST.584J: Magnetic Resonance Analytic, Biochemical, and Imaging Techniques, Spring 2006 Course Directors: Dr. Bruce Rosen and Dr. Lawrence Wald

Magnetic Particle Imaging* A Parallel to MRI?

Ryan Lanning HST.584 Final Project May 16, 2006

^{*}Gleich, B. and Weizenecker, J. Tomographic imaging using the nonlinear response of magnetic particles. *Nature*. **435**: 1214-1217 (2005).

What is Magnetic Particle Imaging (MPI)?

In the simplest terms – Imaging the magnetization of magnetic nanoparticles (MNPs)

- Spatially Resolved Magnetorelaxometry
 - Utilizes a SQUID gradiometer sensitive to 1st or 2nd spatial derivative of magnetic field
 - Romanus, E. *et al.* Magnetic nanoparticle relaxation measurement as a novel tool for *in vivo* diagnostics. *J. Magn. Magn. Mat.* **252**: 387-9 (2002).
- Imaging magnetization of MNPs using their nonlinear response to a modulated field
 - Spatial selection possible by taking advantage of saturation effects

Nonlinear Response of MNPs

Diagram removed for copyright reasons. See Young, H. D. University Physics. 8th ed. Addison-Wesley, Sec 29-8 (1992).

- Applies to ferromagnetic materials
- Nonlinear response occurs from zero-field values

Nonlinear Response to Modulated External Field

- Oscillating magnetic field applied to MNPs
- Produces a time varying response in magnetization [M(t)]

Graphs removed for copyright reasons.

See Figure 1 (page 1214) from Gleich, B., and J. Weizenecker.

 M(t) is composed of a "Tomogr number of higher harmonics

"Tomographic Imaging using the Nonlinear Response of Magnetic Particles." *Nature* 435 (2005): 1214-1217.

 Addition of a time-invariant field produces constant M(t) and minimized harmonics

MPI Spatial Selection

Field-Free Point (FFP)

Diagram removed for copyright reasons.

See Figure 1 (page 1173) from Trabesinger, A.

"Particular Magnetic Insights." Nature 435 (2005): 1173-4.

- Time-independent spatially varying field applied
- Most of object has magnetization saturated
- Regions around zero field strength respond nonlinearly
- Modulated signal [M(t)] in response to oscillating field occurs only in region of nonlinearity

Magnetic Contrast Agents in MPI vs MRI

Resovist - carboxydextran-coated superparamagnetic iron oxide (SPIO) particles (ferucarbotran)

MRI	MPI
 Liver-specific contrast agent Magnetic susceptibility affects on protons Decreases T₁, T₂, T₂* Diminished signal intensity in T₂ and T₂* - weighted images 	 Directly image the magnetization Only areas with contrast agent highlighted No biological signal Improved SNR

MRI images removed for copyright reasons.

See Blakeborough et al. "Hepatic lesion detection at MR imaging: a comparative study with four sequences." *Radiology* 203 (1997): 759-65.

Methods of MPI Image Acquisition Two Fundamental Ways to Spatially Encode

Mechanical Movement

- Object physically moved around the FFP
- Low amplitude oscillating field
- Slow Scanning Speed
- Low SNR

Diagram removed for copyright reasons. See Figure 2 (page 1215) from Gleich, B., and J. Weizenecker. "Tomographic Imaging using the Nonlinear Response of Magnetic Particles." *Nature* 435 (2005): 1214-1217.

Field-Induced Movement

- Apply 3 homogenous fields (drive fields) orthogonal to object
- FFP moved by adjusting drive fields
- High amplitude oscillating fields
- Fast encoding and high SNR

Compare MPI and MRI Spatial Encoding

"Because the interaction may be regarded as a coupling of the two fields by the object, I propose that image formation by this technique be known as zeugmatography, from the Greek $\zeta \epsilon \upsilon \gamma \mu \alpha$, 'that which is used for joining."*

MRI	MPI (Theoretical)
 Static magnetic field for proton resonance 3 gradient fields for spatial encoding: 1 axial (Z) slice selection 2 transverse (XY) encoding Oscillating current applied to gradient field coils At proton resonance Gradient coils detect signal Phased arrays possible Large apparatus 	 Static magnetic field for selecting nonlinear region (selection field) 3 gradient fields for spatial encoding (drive fields) Oscillating current applied to gradient field coils Independent frequency selection Separate recording coil(s) Single side application Small apparatus

*Lauterbur, P.C. Image formation by induced local interactions: examples employing nuclear magnetic resonance. *Nature.* **242**: 190-1 (1973).

MPI – Proof of Principle

Images removed for copyright reasons.

See Figure 3 (page 1215) from Gleich, B., and J. Weizenecker. "Tomographic Imaging using the Nonlinear Response of Magnetic Particles." *Nature* 435 (2005): 1214-1217.

Diagram of Maxwell coils and magnetic field lines removed for copyright reasons.

Imaging Resolution in MPI vs MRI Encompasses Spatial Resolution and SNR

MRI	MPI (Theoretical)
 Physically limited by movement of H₂O Practically limited by gradient slewing, measurement time and noise from instrumentation Determined by FOV and sampling frequency in transverse plane Determined by gradient slice selection in axial plane 	 Limited by field strength at which MNPs produce significant harmonics Also, determined by gradient changes and measurement time (∝ drive frequency) SNR is large: field intensity from MNPs R = 2 \frac{B_k}{G_s}
$pixel = \frac{FOV}{\# pixels} = \frac{1}{\gamma G_x f_s}$ $\Delta z = \frac{\Delta \omega}{\gamma G_z}$	Graph removed for copyright reasons. See Figure 4 (page 1216) from Gleich, B., and J. Weizenecker. "Tomographic Imaging using the Nonlinear Response of Magnetic Particles." <i>Nature</i> 435 (2005): 1214-1217

MPI Image Reconstruction Drive field leads to contribution of neighboring points

Need to find the MNP response for each harmonic detected

$$V_{n}(\hat{y}) = \int G_{n}(\hat{r})C(\hat{x})d\hat{x}$$
$$\int FT$$
$$v_{n}(\hat{k}) = g_{n}(\hat{k})c(\hat{k})$$

Solve for $g_n(k)$ by imaging known reference sample and dividing out c(k). Then perform FT to obtain response function.

How to Apply MPI to Medical Imaging

- Need to image larger volume (> 6mm X 6mm) – Determined by the FFP shift: $F = 2A/G_{c}$
- Need faster encoding time (<<18 min)
 Determined by voxel volume (N³) and drive field

frequency (~ 25 kHz): $T = N^2/f_1$

- Therefore, need larger drive fields and potentially higher frequencies
- Drive field amplitudes ~20mT and frequencies ~ 100kHz can be safely used in humans

MRI & MPI Head to Head

MRI	MPI
 Detects native signal from tissue Many multiple imaging techniques Can also utilize administered contrast agents SNR ∞ B₀ Body and instrument noise effects sensitivity Equipment \$\$\$\$ Detectors small to prevent spin cross-talk Ever growing field 	 Detects signal from administered agents Will only image MNPs High contrast with background High Sensitivity and Resolution Long RF wavelength (~1km) allows significant tissue penetration Potentially Cheaper Equipment Detectors can be much larger than the imaging volume