Harvard-MIT Division of Health Sciences and Technology HST.723: Neural Coding and Perception of Sound Instructor: Bertrand Delgutte

> Neural coding of pitch: Temporal and place representations

© Bertrand Delgutte, 2002-2005

HST.723J - Neural Coding and Perception of Sound

Why study pitch?

- Important role in music (melody and harmony)
- Some role in speech (speaker identity, emotions, tonal languages)
- Present in animal vocalizations
- Differences in pitch are a major cue for segregating sound sources
- Thoroughly studied psychophysically

Outline

- Rate and temporal neural codes
- Pitch based on resolved and unresolved harmonics
- Peripheral representations of pitch
 - Temporal representation in interspike intervals (autocorrelation model)
 - Harmonic templates and rate-place representation
 - Spatio-temporal representation
- Central processing of pitch
 - Are there pitch neurons?
 - Degradation in temporal representations of pitch
 - Neural tuning to temporal envelope

Rate vs. Temporal Codes

- Temporal code conveys more information than rate code
- Information measured in *bits*, the number of binary choices that must be made to completely specify the code
- For 5 time bins:
 - Rate code: log₂(6)=2.6 bits
 - Temporal code: 5 bits

Figure from: Rieke, F., D. Warland, de Ruyter van Steveninck R., and W. Bialek. "Spikes." In *Exploring the Neural Code*. Cambridge, MA: MIT Press, 1997.

Classification of Neural Codes

Neural Codes	Spike Counts	Spike Timing
Single Neuron	Rate code	Temporal code
Neural Population (Map?)	Rate-place or population- rate code	Temporal-place code (all information)

Pitch of harmonic complex tones

Periodicity and Harmonicity: Physiological Basis

\circ Periodicity $\leftarrow \rightarrow$ Temporal representation

- Based on neural phase locking to stimulus waveform
- Limited by jitter in synaptic transmission (~5 kHz upper limit in cats)
- \circ Harmonicity $\leftarrow \rightarrow$ Place representation
 - Based on mechanical frequency analysis and frequency-to-place mapping in the cochlea
 - Limited by cochlear frequency resolution (first 6-10 harmonics in humans)

Harmonicity information is limited by frequency resolution of the cochlea

Stimulus Spectrum F0=200 Hz

Cochlear Filter Bank

Neural

Pattern

Resolved and unresolved harmonics

Time (ms)

Resolved harmonics evoke stronger pitch than unresolved harmonics

Harmonic complex tone, 12 components in sine phase

Figure removed due to copyright considerations. Please see: Bernstein, J. G., and A. J. Oxenham. "Pitch discrimination of diotic and dichotic tone complexes: harmonic resolvability or harmonic number?" *J Acoust Soc Am* 113, no. 6 (Jun 2003): 3323-34.

Pitch based on resolved and unresolved harmonics

	Available Neural Cues	Perceptual Salience	Dependent on component phases
Resolved Harmonics	Spatial and Temporal	Strong	No
Unresolved Harmonics	Temporal Only	Weak	Yes

A paradox

 For normal-hearing listeners outside of the laboratory, pitch perception is based entirely on resolved harmonics

 Studies of the neural coding of pitch have focused (almost) entirely on stimuli with unresolved harmonics

No resolved harmonics in AN rate-place profiles for F0 in range of human voice

- A steady state vowel is a harmonic complex tone whose fundamental frequency (here 128 Hz) determines voice pitch. Even at low sound levels, the rateplace profile shows no obvious peaks at harmonics of the fundamental frequency.
- In general, data from the cat auditory nerve show few, if any, rate-place cues to pitch for harmonic complex tones with fundamental frequencies in the range of human voice (100-300 Hz).

Figure removed due to copyright considerations. Please see: Young, E. D., and M. B. Sachs. "Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers." *J Acoust Soc Am 66, no. 5* (Nov 1979): 1381-1403.

Auditory filters are more sharply tuned in humans than in experimental animals

Cat vocalizations have higher fundamental frequencies than human voice

Neurophysiological experiment

<u>Purpose</u>

- Determine F0 range where individual harmonics of complex tones are resolved in rate responses of AN fibers
- Determine upper F0 limit of temporal representation of pitch

<u>Method</u>

- Single-unit recordings from auditory nerve in anesthetized cats
- Use very wide range of F0s (110-3520 Hz)
- Missing-fundamental stimuli, equal-amplitude harmonics

Pitch is estimated by matching harmonic templates to rate response vs. CF

Please see: Cedolin, L., and B. Delgutte. "Pitch of Complex Tones: Rate-Place and Interspike-Interval Representations in the Auditory Nerve." *J Neurophysiol* (Mar 23, 2005).

Rate-place estimates of pitch are accurate for F0 above 400 Hz

but strength of pitch representation increases with F0 beyond upper frequency limit of missingfundamental pitch

Please see: Cedolin, L., and B. Delgutte. "Pitch of Complex Tones: Rate-Place and Interspike-Interval Representations in the Auditory Nerve." *J Neurophysiol* (Mar 23, 2005).

Licklider's autocorrelation model

Autocorrelation function :

$$r_t(\tau) = \frac{1}{T} \int_{-T}^{0} x(t) x(t-\tau) dt$$

- Delay: chain of synapses or long, thin axon.
- Multiplication: *coincidence detector* neurons.
- The autocorrelation function of a spike train is equivalent to its *all-order interspike interval*.
- Temporal code to place code transformation

Please see: Licklider, J. C. "A duplex theory of pitch perception." *Experientia* 7, no. 4 (Apr 15, 1951): 128-34.

Pitch is prominently represented in pooled interspike interval distribution

Single-formant vowel

Figures removed due to copyright reasons. Please see: Cariani, Peter A., and Bertrand Delgutte. "Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. II. Pitch shift, pitch ambiguity, phase-invariance, pitch circularity, and the dominance region for pitch." *J Neurophysiology* 76, no. 3 (1996):1698-1734.

- Waveform (above) and autocorrelation function (top right) of "single formant vowel" show periodicity at 160 Hz fundamental frequency
- All-order interspike interval histograms of most AN fibers arranged in order of CF show peak at period of single-formant vowel
- Pooled interval distributions, formed by summing interval histograms from all fibers, shows prominent representation of stimulus period

Pitch representation is more robust in all-order interspike interval distributions than in first-order distributions

Single-formant vowel F0=80Hz

 Pooled interval distribution constructed from all-order interspike intervals (left) gives more stable representation of F0 across stimulus levels than pooled distribution based on first-order intervals Figures removed due to copyright reasons. Please see: Cariani, Peter A., and Bertrand Delgutte. "Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. II. Pitch shift, pitch ambiguity, phase-invariance, pitch circularity, and the dominance region for pitch." *J Neurophysiology* 76, no. 3 (1996):1698-1734.

Pitch is estimated by matching periodic template to pooled interspike interval distribution

Please see: Cedolin, L., and B. Delgutte. "Pitch of Complex Tones: Rate-Place and Interspike-Interval Representations in the Auditory Nerve." *J Neurophysiol* (Mar 23, 2005).

Interval-based estimated of pitch are highly accurate for F0 below 1300 Hz

Upper F0 limit matches limit of missing-fundamental pitch in human

but pitch salience of unresolved harmonics is overestimated

Please see: Cedolin, L., and B. Delgutte. "Pitch of Complex Tones: Rate-Place and Interspike-Interval Representations in the Auditory Nerve." *J Neurophysiol* (Mar 23, 2005).

Autocorrelation model gives similar predictions for tones with resolved and unresolved harmonics

Figures removed due to copyright reasons. Please see: Cariani, Peter A., and Bertrand Delgutte. "Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. II. Pitch shift, pitch ambiguity, phase-invariance, pitch circularity, and the dominance region for pitch." *J Neurophysiology* 76, 3 (1996): 1698-1734.

Interspike-interval (autocorrelation) model of pitch

<u>Strengths:</u>

- Works with both resolved and unresolved harmonics
- Accounts for many pitch phenomena: Pitch equivalence, phase and level invariance, pitch shift of inharmonic tones, dominance region
- Account for upper frequency limit of musical pitch (~5 kHz)

O Weaknesses:

- Fails to predict greater salience of pitch produced by resolved harmonics
- Underestimates pitch salience of pure tones
- Requires long neural delay lines (33 ms for 30 Hz lowest pitch)

Neither rate-place, nor interspike-interval representation of pitch is satisfactory

	Psychophysically-desirable properties				
	Level robust	Depends on harmonic resolvability	Predicts upper F0 limit	Phase invariant	
Rate-place	Νο	Yes	Νο	Yes	
Interspike Intervals	Yes	Νο	Yes	Yes	

Spatio-temporal representation of pitch

- Seeks to combine advantages and overcome limitations of rate-place and interspike-interval representations
- Based on idea by Shamma (1985)
- Tested using peripheral auditory models and recording from AN fibers

Spatio-temporal representation of puretone frequency in AN model response

Figures removed due to copyright reasons.

Zhang et al. (2001) model Human cochlear bandwidths

Spatio-temporal representation of resolved harmonics in AN model response

Figures removed due to copyright reasons.

Zhang et al. (2001) model Human cochlear bandwidths

Spatio-temporal representation of pitch

• Principle:

- Spatial variation of phase of basilar membrane motion gives cues to locations of resolved harmonics
- These phase cues can be extracted by mechanism sensitive to relative timing of spikes in AN fibers innervating neighboring cochlear locations (e.g. lateral inhibition, coincidence detection, etc...)
- Possible advantages over interspike interval representation:
 - Depends on harmonic resolvability
 - Requires no delay lines

Scaling invariance in cochlear mechanics (Zweig, 1976)

Figures removed due to copyright reasons.

Larsen et al., 2005

Spatio-temporal representation of puretone frequency in AN fiber response

Spatio-temporal representation of resolved harmonics in AN fiber response

Spatio-temporal representation is robust with stimulus level

Spatio-temporal representation predicts upper F0 limit of pitch of complex tones

Figures removed due to copyright reasons.

Zhang et al. (2001) model Human cochlear bandwidths

Neural representations of pitch

	Psychophysically-desirable properties			
	Level robust	Depends on harmonic resolvability	Predicts upper F0 limit	Phase invariant
Rate-place	Νο	Yes	Νο	Yes
Interspike Intervals	Yes	Νο	Yes	Yes
Spatio- temporal	Partly	Yes	Yes	Yes?

What might a "pitch neuron" look like?

- Tuned to fundamental frequency of harmonic complex tones
- Pitch equivalence: Similar tuning to stimuli that have the same pitch, regardless of spectral content
- Stronger response to stimuli that produce stronger pitch
- Multiple tuning to harmonically-related stimuli (If T is a period, so are 2T, 3T, etc)
- Basic properties do not depend on whether mechanism is temporal or spectral

Neurons with multi-peaked tuning curves in monkey primary auditory cortex

Figures removed due to copyright reasons. Please see: Kadia, S. C., and X. Wang. "Spectral integration in A1 of awake primates: neurons with single- and multipeaked tuning characteristics." *J Neurophysiol* 89, no. 3 (Mar 2003): 1603-22.

- Awake marmoset preparation
- Peak frequencies tend to be harmonically-related
- Other neurons (not shown) show single peak TC, but with inhibition at harmonically related frequencies

Pitch neuron in auditory cortex of awake monkey?

- B. Neuron responds to 3-component harmonic complex tones (A) whose F0 matches pure-tone BF (182 Hz, see C)
- E. Neuron does not respond to individual harmonics (except fundamental)

Figures removed due to copyright reasons.

Bendor & Wang, unpublished

Pitch neurons are located in restricted area near anterolateral border of primary auditory cortex (A1)

Figures removed due to copyright reasons.

Bendor & Wang, unpublished

CN unit types differ in their phase locking to pure tones

Figures removed due to copyright reasons. Please see: Rhode, W. S., and P. H. Smith. "Encoding timing and intensity in the ventral cochlear nucleus of the cat." *J Neurophysiol* 56, no. 2 (Aug 1986): 261-86.

- Good phase lockers: Primarylike, some Onset
- Poor phase lockers: Choppers, many DCN neurons (not shown)

Phase locking to pure tones degrades with each successive synapse in auditory pathway

Figures removed due to copyright reasons.

- 1: Auditory nerve
- 2: Cochlear nucleus
- 3: Superior olive
- 5: Medial geniculate

Rouiller et al. (1979)

Pitch is poorly represented in pooled interval distributions of IC neurons

Figures removed due to copyright reasons.

McKinney (2001)

Sinusoidally amplitude-modulated tones: Modulation frequency, depth and phase

Modulation Transfer Function (MTF)

 A sinusoidally amplitude-modulated (SAM) tone is defined by:

 $s(t) = A \left(1 + m \cos(2\pi f_m t + \phi_m) \right) \cos 2\pi f_c t$

- f_m and f_c are the modulation and carrier frequencies, respectively
- *m* is the *modulation depth*, a number between 0 and 1
- ϕ_m is the modulation phase
- If an AM tone is used as input to a system, the modulation gain is the ratio of the modulation depth in the system's output to that in the input
- A linear system's sensitivity to modulation can be characterized by its *modulation transfer function* (MTF), which expresses the modulation gain as a function of modulation frequency f_m

MTFs of AN fibers are lowpass MTFs of some CN neurons are bandpass

Figures removed due to copyright reasons. Please see: Rhode, W. S., and S. Greenberg. "Encoding of amplitude modulation in the cochlear nucleus of the cat." *J Neurophysiol* 71, no. 5 (May 1994): 1797-825.

- A: AN fibers have *lowpass* modulation transfer functions (MTFs) for AM tones at the CF.
- B-H: MTFs of CN neurons can be either *lowpass* or *bandpass*. MTF shape correlates with unit type based on tone-burst response pattern.
- Best modulation frequencies (BMFs) are 50-500 Hz

Map of best modulation frequencies orthogonal to frequency map in IC?

- Rate MTFs of many IC neurons are tuned to narrow range of modulation frequencies: The temporal code in AN & CN is transformed into a rate code in IC.
- Some *multi* units in IC have BMFs up to 1000 Hz.
- High BMFs are represented in the caudal and lateral parts of iso-frequency bands.
- Multi units could represent inputs to the IC rather than IC neurons.
- Role in pitch processing?

Figures removed due to copyright reasons. Please see: Schreiner, C. E., and Langner G. "Periodicity coding in the inferior colliculus of the cat. II. Topographical organization." *J Neurophysiol* 60, no. 6 (Dec 1988): 1823-40.

AND

Langner, G., and C. E. Schreiner. "Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms." *J Neurophysiol* 60, no. 6 (Dec 1988): 1799-822.

Most best modulation frequencies in IC are below pitch range of human voice

Figures removed due to copyright reasons. Please see: Krishna, B. S., and M. N. Semple. "Auditory temporal processing: responses to sinusoidally amplitude-modulated tones in the inferior colliculus." *J Neurophysiol* 84, no. 1 (Jul 2000): 255-73.

- IC BMFs: 1-150 Hz
- Upper frequency cutoffs of phase locking to AM in IC: 10-300 Hz
- Range in IC appears too low to support general pitch mechanism

Temporal envelope modulations in roughness range are reflected in IC responses

Consonant and Dissonant Stimuli

Dissonance is reflected in average rates and rate fluctuations of IC neurons

Population neural responses in IC correlate with psychophysical dissonance ratings

Figures removed due to copyright reasons.

McKinney 2001