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Abstract 
Although a great deal of attention has been focused on the future potential for molecular-based cancer 
diagnosis, histologic examination of tissue specimens remains the mainstay of diagnosis. The process of 
histologic diagnosis entails the identification of visual features from a slide, followed by the recognition of 
a feature pattern to which the case belongs. The combination of image analysis and machine learning 
imitates this process and in certain circumstances may be able to aid the pathologist. However, there is a 
great deal of variability and noise inherent in such an approach. Therefore, a classification model developed 
from data at one institution is likely to perform acceptably at other institutions, only if the model can handle 
such variability. This paper compares the performance of machine learning models based on fuzzy rules 
(FR), fuzzy decision trees (FDT), artificial neural networks (aNN) and logistic regression (LR) and 
examines how these models behave in the face of noisy and variant data. Results suggest that FDT models 
may be more resistant to data noise. 
 
 
Background 
Although a great deal of attention has been focused on the future potential of molecular-based cancer 
identification, histologic examination of tissue specimens remains the mainstay of diagnosis. The process 
of histologic diagnosis entails the identification of visual features from a slide, followed by the recognition 
of a feature pattern to which the case belongs. The pattern is associated with a high or low probability of 
cancer. For example a pathologist examining a breast biopsy may identify breast epithelial cells with large, 
irregular shaped nuclei, irregularly clumped chromatin, growing in poorly arranged sheets and showing 
invasion into the surrounding connective tissue with an associated fibrotic reaction. These findings 
compose a pattern that is highly correlated with malignancy and would warrant such a diagnosis.   
 
Imaging equipment and image analysis software can partially, and perhaps eventually, completely automate 
the process of feature extraction.1, 2 Given a list of previously identified visual features for a large number 
of cases, machine learning techniques can be used to discern patterns relevant to the separation of cancer 
from benign. The process of discerning such patterns from data results in a model of the domain. 
Diagnostic predictions can be made by applying such models to the data generated from new cases. 
 
Wolberg, et al., demonstrated the correspondence between human histologic diagnosis and the combined 
techniques of image analysis and machine learning using the cytologic diagnosis of breast cancer for 
illustration.3 Breast cancer is the most common cancer in women and the second leading cause of female 
cancer deaths. Cancer screening involves mammography followed by tissue sampling and histologic 
examination of any mammographically worrisome area. Tissue samples are also obtained without 
mammography in the setting of palpable breast lumps. Initial tissue sampling in either situation is typically 
by needle core biopsy or fine needle aspiration (FNA). Core biopsy provides more tissue and retains tissue 
architecture for evaluation, while FNA typically yields a smaller sample and destroys or severely alters the 
tissue architecture. Although more invasive, core biopsy is the initial tissue procurement technique of 
choice in most situations. However, FNA is less invasive, can be performed in the physician’s office at a 
moments notice, is less expensive and therefore is still widely used. In addition, FNA is used more 
extensively for cancer diagnosis and screening in many other organ systems. 
 
The histologic features used to diagnose breast cancer fall into 2 major categories; architectural and 
cytologic. Architectural features include those that describe how groups of cells relate to one another and to 
the surrounding connective tissue. They include characteristics such as the presence or absence of irregular, 
distorted or excessively cellular glands, too many glandular structures and the presence of single epithelial 
cells invading into connective tissue. By and large, these features cannot be reliably ascertained in FNA 
specimens. Cytologic features describe characteristics of single cells and include cell size, nuclear size, 
nuclear membrane irregularity and nuclear chromatin distribution to name a few. The FNA diagnosis of 
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breast cancer is largely based on the nuclear cytologic features of increased nuclear size, nuclear membrane 
irregularity and irregularity of chromatin distribution. These features are relatively easily assessed by FNA. 
 
Wolberg and his colleagues examined 569 breast FNA specimens.3 Semi-automated image analysis 
techniques were applied to digital photomicrographs taken from each case. The image analysis process 
identified the nuclear outline of 10-20 human selected cells within each image. Provided a rough estimate 
of the location of a cell nucleus, image analysis techniques used variations in pixel values to automatically 
identify a nuclear contour. For each nucleus, the nuclear outline and pixel values within the nucleus were 
used to calculate the following 10 values; radius, texture, perimeter, area, smoothness, compactness, 
concavity, concave points, symmetry, and fractal dimension. These attributes are all representations of the 
3 key attributes mentioned above; nuclear size, nuclear membrane irregularity and irregularity of chromatin 
distribution. The values from each of the 10-20 selected cells were used to calculate the mean and standard 
error for each variable within each case. In addition, the three worst or largest values within a case were 
used to calculate a worst mean value for each attribute. The resulting data set consists of 30 variables for 
569 cases. A 31st variable is the class assignment of benign or malignant, based on the pathologist’s final 
cytologic diagnosis which was confirmed in subsequent histologic examination of any additional biopsies 
as well as clinical follow-up. The data set includes 212 cases of cancer and 357 cases of benign breast 
changes. 
 
Wolberg and his colleagues subsequently applied 2 supervised machine learning algorithms to the data and 
then evaluated the diagnostic performance if these models. The algorithms used were logistic regression 
and a decision tree algorithm known as Multisurface Method-Tree (MSM-T). In order to avoid over-fitting 
the training data, a stepwise approach was used to select 3 of the 30 variables, one to represent each of 
nuclear size, texture and shape. The attributes worst area, worst smoothness and mean texture demonstrated 
a classification accuracy of 96.2% using logistic regression and 97.5% using MSM-T. Both results 
represent averages from 10-fold cross validation. 
 
Although their purpose was not to develop an actual diagnostic technique for laboratory use, the general 
idea of combining image analysis and machine learning can be used for the automation of visual 
classification tasks in medicine. However, there is a great deal of variability and noise inherent in such an 
approach. The optical components of imaging equipment would likely vary from one laboratory to another, 
resulting in variability in image capture that could alter the results of feature extraction. Different image 
analysis software would likely add additional variability. Even if, the imaging equipment and software 
were standardized, differences in tissue processing from one lab to the next would result in significant 
variability. For example, the use of different varieties and concentrations of tissue fixatives, as well as 
variations in fixation times, can significantly alter nuclear size and staining of chromatin., In addition, the 
biological variability, even within cancer of a single tissue type like breast epithelium, generates a great 
deal of variability in the histologic features. Therefore, a prediction model developed from data at one 
institution is likely to perform acceptably at other institutions, only if the model can handle this variability. 
 
Fuzzy logic is an extension of Boolean logic that replaces binary truth values with degrees of truth.  It was 
introduced in 1965 by Prof. Lotfi Zadeh at the University of California, Berkeley.4 Since fuzzy logic allows 
for set membership values between 0 and 1, arguably it can provide a more realistic representation of 
biologic, image analysis data that is inherently noisy and imprecise. Fuzzy logic provides a way to arrive at 
a definitive classification decision based on such ambiguous data.  
  
This paper compares the performance of machine learning models based on fuzzy rules (FR), fuzzy 
decision trees (FDT), artificial neural networks (aNN) and logistic regression (LR). The study hypothesizes 
that fuzzy-logic-based modeling approaches will exhibit significantly more stable classification 
performance with increasingly noisy test data. All models were built using an identical training set and 
evaluated on an unaltered holdout test set as well as multiple versions of the same test set distorted with 
noise to simulate variance from image analysis and biologic variance.  
  
 

 



Data set: The Wisconsin Diagnostic Breast Cancer (WDBC) dataset was obtained from the UCI Machine 
learning repository.A The dataset was created by  Wolberg, Street and Olvi and consists of data from 569 
breast FNA cases containing 30 descriptive attributes and one binary classification variable (benign or 
malignant). The descriptive attributes were obtained by semi-automated image analysis applied to digital 
photomicrographs obtained from the FNA slides. The case distribution includes 357 cases of benign breast 
changes and 212 cases of malignant breast cancer. The descriptive attributes are recorded with four 
significant digits and include the nuclear radius, texture, perimeter, area, smoothness, compactness, 
concavity, concave points, symmetry, and fractal dimension. The mean, standard deviation and mean of the 
worst 3 measurements are recorded for each of these ten attributes for a total of 30 variables. There are no 
missing attribute values. 
 
Data pre-processing: The original dataset was divided into a training set containing the first 380 cases and 
a test set consisting of the remaining 189 cases. Models were constructed and tested using both the full 30 
variable data set as well as a limited dataset consisting of only the 3 variables used in the Wolberg models 
(worst area, worst smoothness and mean texture). Six additional test sets were created by adding increasing 
amounts of noise to the original test set data. The noise for each variable in each case was generated by 
selecting at random from a normal distribution with a mean of zero and a standard deviation of 0.001, 0.01, 
0.1, 1, 10 and100 for each of the six increasingly noisy data sets respectively. These six data sets attempted 
to simulate a regular degree of noise that might be the result of variability from image analysis and tissue 
processing. In the results and discussion, these test datasets will be referred to as “noisy” test datasets. One 
additional test set was generated by selecting at random from a normal distribution with a mean and 
standard deviation equal to the mean and standard deviation for that attribute within the specific case’s 
class brethren. This was an attempt to simulate the natural biologic variability of these attributes within 
human cancers and benign tissues. Since this process essentially randomly redistributes attribute values 
from a pool within the class benign or malignant, this dataset will be referred to as the “redistributed” 
dataset. 
 
Software: All modeling and analysis was performed within R version 2.2.0.B Additional packages and code 
used include the NNET library available as part of Ripley’s VR bundle version 7.2-23C and Vinterbo’s 
GCLD library, version 1.05c. The nrc() function for building artificial neural networks using nnet() and the 
lrc() function for building logistic regression models using the glm() function, were provided by VinterboE. 
 
Models: An FR model and an FDT model were built using the gcl and tcl functions from the GCL package. 
2x10-fold cross validation was used to select an appropriate setting for the “nlev” parameter based on the 
highest mean c-index with nlev set to 2 through 7. Final models were generated using an nlev of 2 for both 
the 30-variable and 3-variable FR models. Values of 5 and 6 were used for the 3 and 30-variable FDT 
models respectively. All other arguments to gcl and tcl functions used the default values. Single hidden 
layer aNNs were generated using the nrc function. 5x10-fold cross validation was used to select an 
appropriate setting for the “nunits” parameter based on the highest mean c-index with nunits set to 1 
through 20. The nunits parameter determines the number of units in the hidden layer. Two final aNN 
models were generated for each training set (3 and 30-variables) using nunit values of 9 and 20. All other 
arguments to the nrc function used the default values. A single LR model was generated for each training 
dataset using the lrc function with the default glm parameters. 
 
 
Results 
Parameter settings: The nlev parameter settings for the FR models were compared using 2x10-fold CV on 
the training set for both the 3 and 30-variable datasets. Values from 2 through 7 were examined. Figure 1 
shows the results for the 3-variable data. An nlev of 2 had the highest mean performance (0.979902) and 
this value was used for the final FR model construction. Figure 2 shows similar results for the 30-variable 
dataset, with the highest mean performance (0.9752503) for an nlev setting of 2. It is worth noting that 
although an nlev of 2 results in the highest mean performance for both datasets, the difference in 
performance compared to other nlev values is not statistically significant for nlev of 5, 6, or 7 for either 
dataset (by paired t-test, p-value cutoff of p = 0.05). 
 

Materials & Methods



The comparable results for the FDT models are shown in figures 3 and figure 4 with the highest mean 
performance with an nlev of 5 (0.9779412) and 6 (0.9783514) for the 3 and 30-variable datasets 
respectively. Again, it is worth noting that although an nlev of 5 and 6 result in the highest mean 
performance for the 2 datasets, the difference in performance compared to other nlev values is not 
statistically significant except when compared to an nlev of 2 or 3 for the 3-variable data and an nlev of 3 
for the full dataset.  
 
Results of the 5x10-fold cross validation for aNN models are shown in figure 5 and figure 6. For reasons 
that are not clear, aNN models showed wide variance in performance across different folds, ranging from a 
c-index of near 0.5 up to 1.0 in many models. There is a trend towards decreased variance with increased 
number of hidden units but this does not hold across the board as witnessed by the poor performance in 
some folds with 13 and 14 hidden units. This variance in performance was not diminished by increasing the 
maximum number of weight adjustment iterations from the default 100 up to 1000. An nunit setting of 9 
was selected for both the 3 and 30 variable data in order to strike a balance between maximizing average 
performance, minimizing performance variance and minimizing hidden units to avoid over-fitting. This 
was an ad hoc decision based largely on the visual data presented in figures 5 and 6. For comparison, an 
additional aNN model was generated for both datasets using an nunits setting of 20.  
 
Final Model performance: The performance of each model (2 FR models, 2 FDT models, 4 aNN models 
and 2 LR models) was evaluated by calculating the c-index from the results of applying the model to the 
appropriate test set (3 or 30 variables). Performance deterioration was determined by calculating the c-
index from the results of applying the noisy datasets as well as the redistributed dataset. The results are 
shown in table 1 and table 2 and Figure 7.  
 
 
Discussion 
Due to the fuzzy nature of set membership in fuzzy logic approaches to modeling, this study hypothesized 
that such machine learning algorithms would be more resistant to noise in the data than other models. The 
study examined the response to increasing levels of random noise generated from a normal distribution 
around a mean of zero. This type of noise attempted to simulate noise generated from the imaging process. 
The response to biologic variability was examined by re-selecting each variable at random from a normal 
distribution with a mean and SD equivalent to those for that variable within the corresponding class (benign 
or malignant).  
 
The results of the cross validation studies for parameter selection reveal an interesting trend. The variance 
in c-index values for the fuzzy algorithms appears to be slightly less on average for the 30-variable data 
while the aNN and LR models show distinctly lower variance with the 3-variable data. This suggests the 
possibility that fuzzy models are more stable in the face of excess variables.  
 
In relation to the nlev setting, one might expect that a very low nlev value would not enable sufficient 
separation of the data while too large a value would result in over-fitting. However, the data do not support 
this conclusion since the FR model performed best with an nlev of 2 for both data sets and an nlev of 2 
significantly outperformed a value of 3 in all cases except FDTs build from the 3-variable data. A more 
detailed analysis of the effect of the nlev parameter was beyond the scope of this study. The wide variance 
in performance for the aNN model across numerous nunit settings remains a mystery. The nunit parameter 
signifies the number of hidden units. Alterations to the maximum number of weight adjustment iterations 
as well the decay rate did not alter these results.  
 
All of the final models performed quite well on the original, unaltered test data with a lowest c-index for 
the 30 variable LR model (0.947754). These results are in agreement with Wolberg’s original results and 
conclusion that the data are linearly separable. It is worth noting that all 5 3-variable models outperformed 
the 30-variable models. This underscores the benefits of variable selection for most situations. With 
increasing noise the first model to exhibit a significant performance drop is the 30-variable LR model 
which is sensitive to relatively low levels of noise and argues strongly for the variable selection in LR. 
However, as the noise level continues to increase, the first apparent trend is that the 3-variable models are 
more sensitive to noise, while the 30-variable models retain respectable performance longer on average. 



The aNN models based on a larger feature set appear to be significantly more resistant to noise. At a noise 
of SD 10 units, both FDT models (3 and 30-variable) as well as the 20 unit aNN retain reasonable 
performance. Surprisingly, even with a noise SD of 100 units, the 3-variable FDT model performs with a c-
index approaching 0.9. In this analysis, FDTs appear to be most resistant to noisy data and appear to gain 
no significant benefit from maintaining a larger variable set.  
 
This data set is linearly separable using the 3 variables of worst area, worst smoothness and mean texture. 
The mean for the 2nd parameter is 559 for benign compared with 1422 for malignant cases. The respective 
standard deviations are 164 and 598. The other 2 parameters exhibit significant overlap between benign and 
cancer populations. It appears that with the addition of noise of SD 100, the FDT model is able to retain 
fairly good classification based on the wide margin of separation that exists for this 2nd parameter.  
 
Perhaps the most interesting finding is the marked difference in response to noise between FR and FDT 
models. The nlev parameter works identically for both models. The FR models both used an nlev of 2 while 
the FDT models used values of 5 and 6. Follow-up analysis should examine the behavior of FR models 
with higher nlev settings. However, conceptually, a higher nlev would be expected to over-fit the training 
data and thus perform more poorly. This idea can be best illustrated by imagining a very high nlev value 
that results in very narrow fuzzy sets. In this scenario, each fuzzy set for a given variable contains only one 
member (either a full or partial member) in the training data. As a result, the fuzziness of these sets 
becomes irrelevant and the creation of rules or decision tree boundaries is based on individual cases. Why 
the FDT models seem to be so much more resistant to noise then the FR models is not clear and requires 
more in depth analysis of the actual algorithms.  
 
The redistributed data attempts to simulate biologic variability. Arguably, the true level of biologic 
variability is already represented in the training set. The redistributed data could be considered to represent 
the extremes of such variability and provide one assessment of performance in a worst case scenario. It is 
worth noting that this approach of “redistributing” the data destroys any co-dependencies between variables 
that may exist in the original data. With all 30 variables retained, the performance of both aNN models as 
well as the LR model diminished markedly. Both fuzzy-based models, however, retained a c-index of 
greater than 0.93. All five 3-variable models demonstrated similar performance degradation compared to 
the unaltered test set, but retained reasonably good performance with c-indices ranging from 0.89 to 0.93. 
The LR model had the best performance. However, the maintained performance after data redistribution is 
probably more a feature of the original linearly separable data than the models. 
 
It is worth noting that in controlled situations where noise in the test data can be kept to a minimum, these 
arguments do not apply and all of these models perform equally well. The importance of these findings for 
real world applications may also be insignificant if noise levels are below 0.01 assuming any LR model 
also applies variable selection, as is typically the case. Nonetheless, these results provide some insight into 
the behavior of these models and can be used as a guide to further analyzing and understanding these 
algorithms. 
 
  
Conclusions 
No clear and convincing patterns emerge from the results. The hypothesis of superior performance of 
fuzzy-based models in the face of noisy and redistributed data is not supported. However, the FDT models 
do appear to be more resistant to noise than the other models. Further study should focus on this algorithm 
while examining other parameter settings and evaluating other datasets, especially less linearly separable 
ones. Additional comparison with support vector machine performance might also be useful since the SVM 
algorithm’s ability to identify the separating plane with the largest margin might also provide significant 
performance protection from noisy data. The gcl and tcl functions use triangular fuzzy regions. Additional 
studies might examine the effects of more complex fuzzy set boundaries. The results do provide some 
insight into the behavior of these models and can be used as a guide for further algorithm analysis. 
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Data & Software  

A. Wisconsin Diagnostic Breast Cancer (WDBC) dataset housed in the UCI Machine learning 
repository 

1. Data - http://www.ics.uci.edu/~mlearn/databases/breast-cancer-wisconsin/wdbc.data 
2. Documentation - http://www.ics.uci.edu/~mlearn/databases/breast-cancer-

wisconsin/wdbc.names 
 
B. http://www.r-project.org/ 
 
C. Ripley’s VR bundle for R, version 7.2-23. Original S development by Venables & Ripley. R port 

by Brian Ripley. http://lib.stat.cmu.edu/R/CRAN/src/contrib/Descriptions/VR.html 
 
D. GCL package for R. Staal Vinterbo, Copyright © 2005. (MIT specific Web link removed.)  
 
E. lrc and nrc R functions are located in file experiment.r provided by Staal Vinterbo, Copyright © 

2005. (Please refer to experiment.r file from the Lecture Notes section.) 
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Table 1 
 

 
Fuzzy rules 

nlev = 2 
Fuzzy tree 
Nlev = 5 

Neural net 
Units = 9 

Neural net 
Units = 20 LR 

Base 0.986301370 0.991876394 0.998566422 0.998566422 0.997610704 
Redist 0.895030264 0.906737815 0.893278114 0.902994584 0.932303281 
SD 0.001 0.986619943 0.989805671 0.998566422 0.998566422 0.997929277 
SD 0.01 0.986779229 0.992194967 0.998247850 0.997292131 0.997292131 
SD 0.1 0.778910481 0.960576617 0.838483594 0.800573431 0.813794202 
SD 1.0 0.663985346 0.945046193 0.670436445 0.530662631 0.536874801 
SD 10 0.647738133 0.923144313 0.702771583 0.627906977 0.570563874 
SD100 0.598438993 0.896702772 0.705001593 0.725868111 0.622093023 

 



Table 2 
 

 
Fuzzy rules 

nlev = 2 
Fuzzy tree 
Nlev = 5 

Neural net 
Units = 9 

Neural net 
Units = 20 LR 

Base 0.967983434 0.977779548 0.96065626 0.967824148 0.947754062 
Redist 0.986938515 0.937400446 0.80105129 0.742513539 0.604412233 
SD 0.001 0.970213444 0.983195285 0.960815546 0.967824148 0.956116598 
SD 0.01 0.957789105 0.986779229 0.96065626 0.967824148 0.82470532 
SD 0.1 0.676489328 0.96838165 0.960337687 0.966310927 0.610624403 
SD 1.0 0.514574705 0.962089838 0.934533291 0.966310927 0.505813953 
SD 10 0.504380376 0.961850908 0.692099395 0.938515451 0.54133482 
SD100 0.556944887 0.583625358 0.640570245 0.707470532 0.535281937 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice




