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Outline 
Basic concepts & distributions


– Survival, hazard 
– Parametric models 
– Non-parametric models 

Simple models 
– Life-table 
– Product-limit 

Multivariate models 
– Cox proportional hazard 
– Neural nets 



What we are trying to do 
Predict survival 

Variable 1 Variable 2 days (or probability of survival) 

• and evaluate 
performance on 
new cases 

• and determine 
which variables are 
important 
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Using these




Survival function 
Probability that an individual survives at least t

• S(t) = P(T > t) 
• By definition, S(0) = 1 and S(∞)=0 
• Estimated by (# survivors at t / total patients) 
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Unconditional failure rate


• Probability density function (of death) 
• f(t) = lim Δt-> 0 P(individual dies (t,t+Δt))/ Δt 
• f(t) always non-negative 
• Area below density is 1 
• Estimated by 

# patients dying in the interval/(total patients*interval_width)

Same as # patients dying per unit interval/total




Some other definitions 

•	 Just like S(t) is “cumulative” survival, F(t) is 
cumulative death probability 

• S(t) = 1 – F(t) 
• f(t) = - S’(t) 



Conditional failure rate 
• AKA Hazard function 
• h(t) = lim Δt-> 0 P(individual aged t dies (t,t+Δt))/ Δt 
• h(t) is instantaneous failure rate 
• Estimated by 

# patients dying in the interval/(survivors at t *interval_width)

• So can be estimated by 
# patients dying per unit interval/survivors at t 

h(t) = f(t)/S(t) h(t) = -S’(t)/S(t) = -d log S(t)/dt 



Parametric estimation 

Example: Exponential 
• f(t) = λe-λt 

• S(t) = e-λt 

• h(t) = λ 

S(t) h(t) 
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Weibull distribution 
•	 Generalization of the 

exponential 
• For λ,γ > 0 h(t) 

• f(t) = γλ(λt)γ-1 e-λt γ 

• S(t) = e-λt γ 
t 

• h(t) = γλ(λt) γ-1 

S(t) h(t)
γ = 1 

γ =2 
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Non-Parametric estimation 
Product-Limit (Kaplan-Meier) 

S(ti) = Π (nj - dj )/ nj 

S(t) 

dj is the number of deaths in interval j 
nj is the number of individuals at risk 
Product is from time interval 1 to j 
One interval per death time 

t
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Kaplan-Meier

• Example 
•	 Deaths: 10, 37, 40, 80, 91,143, 164, 188, 188, 190, 

192, 206, … 



Life-Tables 
• AKA actuarial method

S(ti) = Π (nj - dj )/ nj


dj is the number of deaths in interval j

nj is the number of individuals at risk


Product is from time interval 1 to j


• 

S(t) 
Kaplan-Meier S(t) 

Pre-defined intervals j are independent of death times 
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Simple models




Multiple strata




Multivariate models


•	 Several strata, each defined by a set of 
variable values 

•	 Could potentially go as far as “one 
stratum per case”? 

• Can it do prediction for individuals? 



Cox Proportional Hazards 

• Regression model 
•	 Can give estimate of hazard for a 

particular individual relative to baseline 
hazard at a particular point in time 

•	 Baseline hazard can be estimated by, 
for example, by using survival from the 
Kaplan-Meier method 



Proportional Hazards


λi = λ e−βxi 

where λ is baseline hazard and xi is covariate for patient 

Cox proportional hazards 

hi(t) = h0(t) e βxi 

•	 Survival 

Si(t) = [S0(t)]
eβxi 



Cox Proportional Hazards


hi(t) = h0(t) e βxi 

• New likelihood function is how we extimate β 
•	 From the set of individuals at risk at time j (Rj), the probability of 

picking exactly the one who died is 

h0(t) e βxi 

Σm h0(t) e βxm 

• Then likelihood function to maximize to all j is 

• L(β) = Π (e βxi / Σm e βxm ) 



Important details


•	 Survival curves can’t cross if hazards are 
proportional 

•	 There is a common baseline h0, but we don’t need to 
know it to estimate the coefficients 

• We don’t need to know the shape of hazard function 
•	 Cox model is commonly used to interpret importance 

of covariates (amenable to variable selection 
methods) 

• It is the most popular multivariate model for survival 
•	 Testing the proportionality assumption is difficult and 

hardly ever done 



Estimating survival for a 

patient using the Cox model


• Need to estimate the baseline 
•	 Can use parametric or non-parametric model 

to estimate the baseline 
•	 Can then create a continuous “survival curve 

estimate” for a patient 
• Baseline survival can be, for example: 

– the survival for a case in which all covariates are 
set to their means 

– Kaplan-Meier estimate for all cases 



What if the proportionality 

assumption is not OK?


• Survival curves may 
cross 

•	 Other multivariate 
models can be built 

• Survival at certain time 
points are modeled and 
combined100 
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Single-point models 

• Logistic regression 
• Neural nets 

age 
gender 

blood pressure 
cholesterol 

CHD in ta


smoking 

weight 



Problems


•	 Dependency 
between intervals is 
not modeled (no 
links between 
networks) 

•	 Nonmonotonic 
curves may appear 

• How to evaluate? 

Survival 
(%) 

nonmonotonic 
curve 

1 2 3 4 5
Year 

S(1)=0.9 S(2)=0.6 S(3)=0.4 S(4)=0.3 S(5)=0.5 S(6)=0.3 

patients 
followed 
for >1 year >2 years >3 years >4 years >5 years >6 years 

input nodes: patient data


output nodes: probability of survival in a given time point
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Accounting for dependencies


• “Link” networks Survival (%) 

in some way to 
account for 
dependencies 

monotonic 
curve 

0 1 2 3 4 

Year S(4)=0.2 

S(3)=0.3 

Output from lower network serves as 
input for upper network. 
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Summary


•	 Kaplan-Meier for simple descriptive 
analysis 

•	 Cox Proportional for multivariate prediction 
if survival curves don’t cross 

•	 Other methods for multivariate survival 
exist: logistic regression, neural nets, 
CART, etc. 
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