
HST 952 

Computing for Biomedical Scientists 

Harvard-MIT Division of Health Sciences and Technology
HST.952: Computing for Biomedical Scientists



Introduction 
Medical informatics is interdisciplinary, 
and borrows concepts/ideas from: 
• medicine 
• computer science 
• information science 
• statistics 
This course focuses mainly on computer science 
concepts used in medical informatics 



Introduction 
Why learn computer science basics? 
• May need to design systems that others 

implement 
• May need to implement prototypes 
• May need to oversee programmers 
• May need to analyze systems/products 
• May need to apply these concepts in your 

research projects/future job 



Course overview 

Course Aims 
• Present basic computer science concepts 

necessary for understanding and solving 
medical informatics problems (part 1) 

• Introduce important data and knowledge 
representation methods (part 2) 

• Examine data storage and retrieval issues as 
they relate to the medical domain (part 3) 



Outline 

• Overview of the computer 
• Programming languages and paradigms 
• Solving problems with a computer 

– abstraction 
– algorithms 

• Questionnaires 



Overview of the computer 

1) Processor (CPU) 
– Datapath (“brawn”: 

operations) 
– Control (“brain”: tells datapath, memory, I/O 

devices what to do according to the wishes of a 
program) 

2) Memory 
(where programs are kept when they are running; 
contains data needed by running programs) 

performs arithmetic 



Overview of the computer 

3) Input 
(writes data to memory) 

4) Output 
(reads data from memory) 



Overview of the computer

Memory
(primary)

InputControl

Datapath Output

Processor (CPU)



Overview of the computer 
• Communication with a computer requires the 

use of electrical signals 
• The easiest signals for a computer to understand 

are off and on 
• The “alphabet” for a computer (used in its 

machine language) consists of two letters that 
represent the off and on signals: 0 and 1 

• Each letter is referred to as a binary digit or bit 



Overview of the computer 
• Computers respond to/act on instructions 
• Instructions are collections of bits that the 

computer understands 
• Early programmers communicated with a 

computer in its machine language using binary 
numbers (very tedious) 

• Communication using symbolic notation that 
was closer to the way humans think was soon 
adopted 



Overview of the computer 
• Programmers created a program called an 

assembler to translate from the new symbolic 
notation to binary 

• This symbolic notation was called assembly 
language 
The symbolic instruction: add A, B 

is translated by the assembler to a form the 
computer understands: 1000110010100000 



Overview of the computer 
• Assembly language is still used today 
• It requires a programmer to write one line 

for every instruction the computer will 
follow (think like a machine) 

• Using the same ideas that led to assemblers, 
programmers created programs called 
compilers 



Overview of the computer 

• Compilers translate a high-level programming 
language (such as C++) to a low-level one (such 
as assembly language) 

High-level statement: A + B 
Assembly language: add A, B 
Machine language: 1000110010100000 



Overview of the computer 
• The most important program that runs on any 

computer is the operating system (e.g., 
Unix/Linux, Mac OS, Windows XX, IBM OS/2) 

• The OS manages the execution of every other 
program that runs on a computer 

• It recognizes keyboard input, sends output to 
display screens, keeps track of files on disk and 
controls peripheral devices such as printers, etc. 



Side note on Java 

• Assembly language varies from one type of 
computer to another (as does machine language) 

• Traditional compilers compile a program into 
the version of assembly language that runs on a 
particular type of computer 

• Running the same program on another type of 
computer may require rewriting some of its 
high-level code and usually requires recompiling 



Side note on Java 
• Time is often spent creating versions of programs 

that are customized for a particular type of 
computer 

• Java compilers translate high-level Java 
statements to bytecode 

• Bytecode is not customized to any specific type 
of computer (it is architecturally neutral) 

• The idea is that you can write a Java program on 
one type of computer and run it on any other 



Programming language paradigms 

Many high-level languages have the following 
characteristics: 
• Programming in these languages is issuing 

instructions/commands (imperatives) 
• There is a notion of modifiable storage 

(variables) 
• Assignment is used to change the state of the 

variables (and consequently of the program) 



Programming language paradigms 
• Variables and assignment together serve as the 

programming language analog of hardware’s 
modifiable storage (computer main memory) 

This paradigm/pattern of programming is called 
imperative programming 

Examples of imperative languages: 
C, Pascal, C++, Java, Fortran 



Programming language paradigms 
Some other high-level languages have different 
characteristics: 
• Programming in these languages is defining or 

declaring a solution 
• A programming language analog of hardware’s 

modifiable storage is not an important feature 
This paradigm is called declarative programming 
Examples of declarative languages: 
Common Lisp, Scheme, Prolog 



Example Problem 

The factorial problem (for numbers greater 
than or equal to 0): 
• the factorial of 0 is 1 
• the factorial of any number, n, greater than 0 

is n multiplied by the factorial of n minus 1 
(finding the factorial of a number, n, larger 
than 0 requires finding the factorial of all 
numbers between n and 0) 



Imperative Programming Example 
Solution to the factorial problem for a number n: 
- create a function called factorial-rec that takes n as an 

argument 
- create a variable within factorial-rec called factorial 
- create another variable within factorial-rec called temp 
- if n is 0 return a value of 1 (the factorial of 0 is 1) 
otherwise (n is greater than 0) 
- assign the value of n to factorial 
- assign to temp the value of n minus 1 
- return factorial multiplied by factorial-rec(temp) 



Imperative Programming Example 
Previous imperative algorithm in Java: 

int factorial-rec(int n) // assume n is a number >= 0 
{ 

int factorial; 
int temp; 
if (n = 0) return 1; // factorial of 0 is 1 
factorial = n; 
temp = n - 1; // temp stores the next number in the series 
return 

} 
factorial * factorial-rec(temp); 



Imperative Programming Example 
Trace of factorial of the number 4: 

factorial-rec(4) 
4 * factorial-rec(3) = 
4 * 3 * factorial-rec(2) = 
4 * 3 * 2 * factorial-rec(1) = 
4 * 3 * 2 * 1 * factorial-rec(0) = 
4 * 3 * 2 * 1 * 1 = 
24 

returns: 



Declarative Programming Example 

Declarative version of factorial in Scheme: 
(define (factorial n) 

(if (= n 0) 1 
(* n (factorial (- n 1))))) 

Trace of solution for the number 4: 
(factorial 4) = 
(* 4 (* 3 (* 2 (* 1 1)))) = 
24 



Observations 

• Declarative programming is often a more 
intuitive approach to solving a problem 

• Easier to use for certain classes of problems 
(theorem proving, etc.) 

• However, since it does not attempt to mirror real 
hardware storage allocation, memory 
management and speed are sometimes problems 



Solving problems with computers 

In order to create a computer program to solve 
a particular problem we must: 
• create a concise description/model of the 

problem, omitting details irrelevant to 
solving it (this is an example of abstraction) 

• devise appropriate methods for solving this 
concise description (create an algorithm) 



Solving problems with computers 
• The word algorithm is named for al-Khowarizmi, 

a 9th century Persian mathematician 
• An algorithm is a step by step procedure for 

solving a problem 
• You are all familiar with clinical algorithms or 

algorithms for cooking (also known as recipes) 
• Creating “elegant” algorithms (algorithms that 

are simple and/or require the fewest steps 
possible) is a principal challenge in programming 



Creating a simple algorithm 

Problem: 

You need to share a pizza with five of your 
friends so that each of you gets a piece of the 
same size 

Solution: 

Volunteer? 



Another algorithm 

Problem: 
Write out a step by step description of Euclid’s algorithm for 
finding the greatest common divisor of two non-negative integers, 
X and Y: 

As long as the value of neither X nor Y is zero, continue 
dividing the larger of the values by the smaller and 
assigning to X and Y the values of the divisor and 
remainder respectively. 
remainder becomes 0 is the greatest common divisor. 

The final value of X when the 



Euclid’s GCD Algorithm 
If x is less than or equal to 0 then stop 
If y is less than or equal to 0 then stop 

As long as y is greater than 0 repeat these steps: 
if x is greater than y then numerator = x and divisor = y 
otherwise numerator = y and divisor = x 
remainder 
x 
y 

When y is equal to 0 the gcd is x 

= numerator modulo divisor 
divisor = 

= remainder 



Solving problems with computers 

• The set of steps that define an algorithm must be 
unambiguous (no room for misinterpretation) 

• An algorithm must have a clear stopping point 
(a common mistake for programmers developing 
algorithms for problems that involve repetitive 
tasks is producing a series of steps that never end 
-- an infinite loop) 



Another problem 

A physician with a small practice wants you to 
write a program that calculates the number of 
minutes he can spend per appointment. 
patients each day and works an 8 hour day. 
needs half an hour for lunch, and 10 minutes after 
each patient visit to write up notes. You may 
assume for this exercise that each patient gets an 
equal amount of time with the physician. 

He sees 15 
He 



Questionnaires 




