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Recap: Searching 

•	 Linear search is most appropriate for searching through a 

collection of unsorted items 
•	 It is not very efficient, but is easy to program

•	 Binary search is a more efficient search method than linear 

search 
•	 It works for arrays/collections that are already sorted (is 

essentially the strategy that humans use for searching a phone 
book or dictionary) 
–	 this strategy is often called a divide-and-conquer strategy 

•	 Strategy for searching for a name in one section of a phone 
book is the same as initial strategy for searching for the name 
in the entire phone book 

•	 This implies that we can solve the binary search problem 
using recursion 



Recap: Sorting


•	 Selection sort is one of the easiest sorting 
methods to understand and code 

•	 Interchanges smallest number in unsorted 
portion of an array with first location in 
unsorted portion of array 

•	 It is not the most efficient sorting method


•	 Merge sort uses a divide-and-conquer 
strategy for sorting 

•	 More efficient than selection sort




Read


Foundations of Computer Science by Aho and 
Ullman 
• Chapter 2 
• Chapter 3



Outline


• Time complexity of algorithms




Time complexity of algorithms


•	 As can be seen from searching and sorting examples, 
different algorithms may exist for a particular 
problem 

•	 In order to choose an algorithm for solving the 
problem we often need to consider its performance 
– how quickly it runs 
– whether it uses computing resources efficiently


•	 This means that we need to be able to measure and 
compare the performance of different algorithms for 
the same problem 



Time complexity of algorithms

•	 When you need to write a program that is used 


only once on small amounts of data 
– okay to select the easiest to implement algorithm 

• When you need to write a program that needs to 

be reused many times other issues may arise

– how much times does it take to run it? 
– how much storage space do its variables use?


– how much network traffic does it generate? 
•	 For large problems the running time is what 

really determines whether a program should be 
used 



Time complexity of algorithms


• To measure the running time of a program, we

– Select different sets of inputs that it should be 

tested on (for benchmarking). Such inputs may 
correspond to 

• the easiest case of the problem that needs to be solved 
• the hardest case of the problem that needs to be solved 
• a case that falls between these two extremes 

– Analyze its running time on the set of inputs 
• The “Big-Oh” notation is a measure that is used in 

estimating this 

• We will focus on analysis of running time




Analyzing a program’s running time


•	 First we determine the size of its input 
– for a program that sorts n numbers, n is the size of its input 

•	 We use the function T(n) to represent the number of 
units of time taken by the program on an input of size n 

•	 Example: a sequential search program on an input of 

size n has a running time

T(n) = c*n


–	 c is a constant (greater than 0)

– sequential search has a running time that is linearly 


proportional to the size of its input: it is a linear time

algorithm




Analyzing a program’s running time

•	 In many cases, the running time of a program 


depends on a particular type of input, not just 

the size of the input

– the running time of a factorial program depends 

on the particular number whose factorial is being 
sought because this determines the total number of 
multiplications that need to be performed 

– the running time of a search program may depend 
on whether the value being sought occurs in the 
collection of items to be searched 

•	 In these cases, we define T(n) to be the worst-
case running time 



Analyzing a program’s running time


• The  worst-case running time is the maximum possible 
running time on any input of size n 

• The  average-case running time is the average running 

time of a program over all possible inputs of size n


– this is often a more realistic measure of 

performance than worst-case running time


– it is much harder to compute than worst-case time


– it assumes that each possible input of size n is 
equally likely (this is often untrue) 

•	 The best-case running time is the minimum possible 
running time on any input of size n 



Analyzing a program’s running time


•	 The worst-case running time is what is most 
commonly used to measure a program’s running time 

•	 To assess the running time, we have to accept the idea 
that certain programming operations take a fixed 
amount of time (independent of the input size): 
–	 arithmetic operations (+, -, *, etc.) 
–	 logical operations (and, or, not) 
–	 comparison operations (==, <, >, etc.)

–	 array/vector indexing 
–	 simple assignments (n = 2, etc.) 
–	 calls to System methods such as println




Analyzing a program’s running time


Let’s analyze the running time of the 
factorial program fragment below: 

findFactorial(n) {


int factorial = 1; // set initial value of factorial to 1


int iterator = 1; // set initial value of loop iterator to 1


while (iterator <= n) {


factorial = factorial * iterator; 
iterator = iterator + 1; 

} // end of while () 
System.out.println("The factorial is " + factorial); 

}




Analyzing a program’s running time

findFactorial(n) {


int factorial = 1; // set initial value of factorial to 1

int iterator = 1; // set initial value of loop iterator to 1

while (iterator <= n) {


factorial = factorial * iterator; 
iterator = iterator + 1;


} // end of while ()

System.out.println("The factorial is " + factorial);


}


•	 We perform two variable initializations and two assignments before the 
while loop 

•	 We check the loop condition n+1 times 
•	 We go into the while loop n times 
•	 We perform two assignments, and two arithmetic operations each time 
•	 We perform one print statement 
•	 The running time, T(n) = 4  + (n+1) + n*(4) + 1 

T(n) = 5n + 6 



Analyzing a program’s running time


Imagine that for a problem we have a choice of 
using program 1 which has a running time 

T1(n) = 40*n + 10 
and program 2 which has a running time of 

T2(n) = 3*n2 

Let’s examine what this means for different 
values of n 



Analyzing a program’s running time

T1(n) = 40*n + 10


T2(n) = 3*n2


Running times for T1(n) and T2(n): 
n T1(n) T2(n) 
1  50  3  
2  90  12  
… 

10 410 300 
… 

13 530 507 
14 570 588 
15 610 675 
... 

20 810 1200 
21 850 1323 
22 890 1452 



Analyzing a program’s running time

T1(n) = 40*n + 10


T2(n) = 3*n2


If program 1 and 2 are two different methods for 
finding a patient ID within the database of a small 
practice with 12 patients (i.e., n = 12) which program 
would you choose? 

Would your choice be different if you knew that the 

practice would expand to include up to 100 patients? 




Analyzing a program’s running time

•	 Program 2 has a running time that increases fairly 


quickly as n gets larger than 12


•	 Program 1 has a running time that grows much more 
slowly as n increases 

•	 Even if the speed of the computer hardware on which 
we are running both programs doubles, T1(n) remains 
a better choice than T2(n) for large n 

•	 For large collections of data such as can be found in 
electronic medical records, etc. improving hardware 
speeds is no substitute for improving the efficiency 
of algorithms that may need to manipulate the data in 
such collections 



Analyzing a program’s running time

•	 The precise running time of a program depends on 


the particular computer used. Constant factors for a 

particular computer include:

– the average number of machine language instructions the 

assembler for that computer produces 
– the average number of machine language instructions the 

computer executes in one second 

•	 The Big-Oh notation is designed to help us focus on 

the non-constant portions of the running time


•	 Instead of saying that the factorial program studied 
has running time T(n) = 5n + 6, we say it takes O(n) 
time (dropping the 5 and 6 from 5n + 6) 



Analyzing a program’s running time

The Big-Oh notation allows us to 

– ignore unknown constants associated with the computer 
– make simplifying assumptions about the amount of time 

used up by an invocation of a simple programming 
statement 

If 

– f(n) is a mathematical function on the non-negative integers 

(i.e., n = 0,1,2,3,4,5,…), and 
– T(n) is a function with a non-negative value (possibly 


corresponding to the running time of some program)


We say that 

T(n) is O(f(n)) if T(n) is at most a constant times f(n) for 
most values of n greater than some base-line n0 



Analyzing a program’s running time


Formally:

T(n) is O(f(n)) if there exists a non-negative integer 
n0 and a constant c > 0 such that 
for all integers n >= n0, T(n) <= c*f(n) 

For program 1 in our previous example T(0) = 10, 

T(1) = 50, and T(n) = 40n + 10 generally.  We can say


that T(n) is O(n) because for n0= 10, n >= n0 and c = 41,

40n + 10 <= 41n 
(this is because for n>=10, 40n + 10 <= 40n + n) 



Analyzing a program’s running time


For program 2 in our previous example T(0) = 0, 

T(1) = 3, and T(n) = 3n2 generally. We can say 
that T(n) is O(n2) because for n0= 0, n >= n0 and c = 3, 

3n2 <= 3n2




Analyzing a program’s running time


• Binary search iterative algorithm analysis (board)




Analyzing a program’s running time


Common program running times and their names:


Big-Oh Informal name Example we’ve seen 
O(1) constant time 
O(log n) logarithmic time binary search 
O(n) linear time sequential search 
O(n log n) n log n time merge sort 
O(n2) quadratic time selection sort 
O(n3) cubic time 
O(2n) exponential time 




