
Harvard-MIT Division of Health Sciences and Technology
HST.952: Computing for Biomedical Scientists

HST 952

Computing for Biomedical Scientists

Lecture 3

Recap

Algorithm:
A series of unambiguous steps for solving a
problem

Object-oriented programming:
Approach to programming that relies on
objects and interactions among objects

Recap

Object:
– Has attributes (properties)
– Has methods (methods define the way the object

interacts with “the world”)

Each method associated with an object
implements an algorithm that solves a
particular problem that is specific to the
object

Recap

Class definition:

– Provides a template of the attributes and
methods associated with a kind of object

– An object is a specific instantiation of a
class

Recap

Example class: Vehicle

Attributes might include:

– Number of wheels

– Type
– Color
– Manufacturer

– Mileage

Methods might include:
– getMileage()
– setMileage(int miles)
– setMileage(Vehicle otherv)

Recap

Objects (instances) of class Vehicle

VolvoS60

Number of wheels : 4
Type: Car
Color: Blue
Manufacturer: Volvo
Mileage: 5,000 miles

DodgeNeon

Number of wheels : 4
Type: Car
Color: Green
Manufacturer: Dodge
Mileage: 10,000 miles

Recap

Objects (instances) of class Vehicle

HarleyDynaGlide

Number of wheels : 2
Type: Motorcycle
Color: Black
Manufacturer: Harley-Davidson
Mileage: 1,000 miles

MackVision

Number of wheels : 18
Type: Truck
Color: Red
Manufacturer: Mack
Mileage: 50,000 miles

Recap

Imagine that we want to keep track of how

many tons a truck can haul, but are not

interested in this for cars or motorcycles

One approach to doing this could involve
making the Vehicle class a parent class
(superclass) of the Car, Motorcycle, and
Truck (sub)classes

Recap

Attributes and methods common to all vehicles
would be described in the Vehicle class

Attributes that are specific to a Car, Truck, or
Motorcycle would be specified in the
appropriate subclass

For our example, the Truck class could have the
attribute tonnage and methods getTonnage()
and setTonnage() which the Car and
Motorcycle classes would not have

This Lecture

We will examine some Java constructs that serve as
building blocks/tools for implementing an algorithm
in Java

Java constructs include:
– Expressions (boolean, arithmetic, logical, etc.)
– Operators (comparison, logical, arithmetic)

– Statements (assignment, branch, loop, etc.)

Our focus will be on constructs that are important for
determining the flow of control in a program

Boolean Expressions

•	 Evaluate to true or false

•	 May be used with other language constructs
to determine the flow of control in a
program

•	 Involve comparison operators and/or logical
operators

Comparison Operators

Symbol Description

== is equal to

!= is not equal to
< is less than

<= is less than or equal to

> is greater than
>= is greater than or equal to

Comparison Operators

•	 The last four comparison operators may only

be used to compare values from ordered
sequences (numbers, characters)

•	 Examples of boolean expressions:
‘y’ < ‘z’ (evaluates to true)
5.9 >= 23 (evaluates to false)

true == false (evaluates to false)

25 != 25 (evaluates to false)

Logical Operators

• Binary operator (requires two operands)
• Unary operator (requires just one operand)

Symbol Description
&& and (binary operator)

|| or (binary operator)

! not (unary operator)

Logical Operators

•	 How the && operator works
true && true evaluates to true
true && false evaluates to false
false && true evaluates to false
false && false evaluates to false

• Once one of its operands is false, a boolean

expression involving && evaluates to false

Logical Operators

•	 How the || operator works
true || true evaluates to true
true || false evaluates to true
false || true evaluates to true
false || false evaluates to false

• Once one of its operands is true, a boolean

expression involving || evaluates to true

Logical Operators

•	 How the ! operator works
! true evaluates to false
! false evaluates to true

•	 a boolean expression involving ! evaluates to
the opposite of the operand’s truth value

Logical Operators

•	 ! has the highest precedence
•	 && has the next highest precedence

•	 || has the lowest precedence
•	 may use parentheses to group parts of an

expression to force a particular order of
evaluation

Logical Operators

What do the boolean expressions in these
assignment statements evaluate to?

boolean firstBool = true || false && false;
boolean secondBool = (true || false) && false;
boolean thirdBool = firstBool || secondBool;
boolean fourthBool = !true || false;
boolean fifthBool = !(true && false);

Flow of control

•	 May need to write methods that have to choose one

path out of several possible paths
(programs for an ATM machine have to choose how much
money to dispense based on your input and balance)

•	 May need to repeat an action several times to obtain

a desired result

(e.g., solution to the GCD problem)

Branching statements

•	 Allow us to make a choice of an action given
two or more options

•	 Use implicit or explicit boolean expressions in

making the choice

Examples of Java branching statements:
•	 if /if-else statement (uses explicit boolean expr.)

•	 switch statement (uses implicit boolean expr.)

if/if-else statement

Syntax:
if (boolean expression)

{
// perform action1

}
else

{
// perform action2

}

if/if-else statement

•	 The actions following the if part of the statement are

performed only when the boolean expression
evaluates to true

•	 If the boolean expression evaluates to false, the
actions following the else part of the statement are
executed (when an else is present)

•	 The curly braces group together all the actions to be
performed

•	 If only one action is to be performed, the curly
braces may be omitted

if/if-else statement

Example:
if (score < 100)

System.out.println(“Score is less than 100);
if (score < 90)

System.out.println(“Score is less than 90);
if (score < 80)

System.out.println(“Score is less than 80);

what happens when score is 50?

if/if-else statement

if (score < 80)

System.out.println(“Score is less than 80);
else {

if (score < 90)
System.out.println(“Score is less than 90);

else {
if (score < 100)

System.out.println(“Score is less than 100);
}

}

what happens when score is 50?

if/if-else statement

Easier way to write the same sequence of statements:
if (score < 80)

System.out.println(“Score is less than 80);
else if (score < 90)

System.out.println(“Score is less than 90);
else if (score < 100)

System.out.println(“Score is less than 100);

what happens when score is 120?

Switch statement

•	 Multi-way branching statement

•	 Makes a decision on which branch to take

based on the value of an integer or character
expression (called the controlling expression)

•	 Can be mapped to an equivalent if-else
sequence (but not always the other way
around)

•	 Syntax next

Switch statement

switch(int or char expression) {

case int or char constant:
// perform action1
break;

case int or char constant:
// perform action2
break;

default:
// perform action3
break;

}

Switch statement

Note:

•	 there is an implicit equality comparison

between the int or char expression in the
switch and the constant in a case

•	 default case is optional

•	 break statement ends each case and is

necessary to prevent fall-through

Switch statement

Example (firstInitial is a variable of type char):

switch(firstInitial) {

case ‘A’:
System.out.println(“Instructor is Aziz”);
break;

case ‘O’:
System.out.println(“Instructor is Omolola”);
break;

Example continued on next slide

Switch statement

case ‘Q’:

System.out.println(“Instructor is Qing”);
break;

default:
System.out.println(“Unknown instructor”);
break;

}

Switch statement

Another example (myNum is a variable of type int):
switch(myNum) {

case 1:
System.out.println(“The number is one”);

case 2:
System.out.println(“The number is two”);

default:

System.out.print(“The number is neither”);

System.out.println(“ one nor two”);

}

What happens when myNum is 1?

Switch statement

Another example (myNum is a variable of type int):
switch(myNum) {

case 1:
System.out.println(“The number is one”);

case 2:
System.out.println(“The number is two”);

default:

System.out.print(“The number is neither”);

System.out.println(“ one nor two”);

}

What happens when myNum is 3?

Switch statement

Example: Cases with no breaks (firstInitial is a variable of type char):
switch(firstInitial) {

case ‘A’:
case ‘a’:

System.out.println(“Instructor is Aziz”);
break;

case ‘O’:

case ‘o’:

System.out.println(“Instructor is Omolola”);
break;

Example continued on next slide

Switch statement

case ‘Q’:

case ‘q’:

System.out.println(“Instructor is Qing”);
break;

default:
System.out.println(“Unknown instructor”);
break;

}

Fall-through is desired in this example

Loop Statements

•	 Allow us to repeat an action/several
actions until a particular condition is met

Examples of Java loop statements:

•	 while
•	 do-while
• for

While Loop

Syntax:

while(boolean expression)
{

// perform action(s)
}

While Loop

• The actions in the loop body are performed only

when the boolean expression evaluates to true

•	 If the boolean expression is true, the actions are
performed until it is false

• If the boolean expression is never false, we may

have an infinite loop (actions performed until

program runs out of memory resources, etc.)

•	 This implies that there should be a statement in
the body of the loop that alters the loop’s course

While Loop

Example:
int iterator = 0;
while(iterator < 10)
{

System.out.println(“Iterator is ” + iterator);

iterator = iterator + 1;

// another way of writing the line above is iterator += 1

}

Do-While Loop

Syntax:

do
{

// perform action(s)
} while(boolean expression);

Do-While Loop

•	 The actions in the loop body are performed until
the boolean expression evaluates to false

•	 If the boolean expression is never false, we may
also have an infinite loop

•	 This implies that there should be a statement in

the body of the loop that alters the loop’s course
(ensures that the boolean expression is
eventually false)

Do-While Loop

Example:

int iterator = 0;

do

{

System.out.println(“Iterator is ” + iterator);

iterator = iterator + 1;

// another way of writing the line above is iterator++

} while(iterator < 10);

How does this differ from the while loop example in terms of what
gets printed?

For Loop

Syntax:

for(initializer; boolean expression; update action)
{

// perform actions
}

For Loop

Example:

int iterator;

for(iterator = 0; iterator < 10; iterator++)

{

System.out.println(“Iterator is ” + iterator);
}

Read

Chapter 3

