
Harvard-MIT Division of Health Sciences and Technology
HST.952: Computing for Biomedical Scientists

HST 952

Computing for Biomedical Scientists

Lecture 5

Outline

•	 Recursion and iteration

•	 Imperative and declarative programming
revisited (the factorial problem)

•	 Encapsulation/information hiding and Abstract
Data Types (ADTs)

•	 Classes, objects, and methods continued

•	 Arrays

Recursion and Iteration

•	 Some methods have a “fixed” number of steps

(e.g. a method that uses multiplication to square a
number n will use one multiplication no matter how
large n is)

•	 Other methods have steps whose size depend on
the value of their parameters

•	 Recursion strategy: do nearly all the work first;
then there will only be a little left to do
e.g.: to find 52!, have to multiply 53 numbers together,
which requires 52 multiplications. First find 51! ­

multiply 52 numbers - and there is only one

multiplication left to be done

Recursion

•	 Involves choosing a sub-problem that is of the

same form as the main problem
• To avoid an infinite number of steps with a

recursive strategy, must define a base case

•	 A base case is one for which there is no sub­
problem, no further work needs to be done for a

Note: may have more than one base casebase case as with the Fibonacci numbers problem

(in the factorial example, the base case is finding the
factorial of 0 -- simply “return” the value 1)

•	 Basis for recursion is mathematical induction

Iteration

• Iteration strategy: By doing a little bit of work

first, transform your problem into a smaller one

with the same solution. Then solve this smaller

problem

e.g.: to find 52!, first multiply two of the 53 numbers to be
multiplied and store their product. Now there are only 52 numbers
to multiply (including the stored product) and 51 multiplications
left to do. Multiply the stored product with another number from
the remaining 52. Now there are only 51 numbers to multiply.
Repeat this process of multiplying the product to a number until
there is only one number remaining (the factorial) and there are
zero multiplications left to do.

Factorial example revisited (iteration)

/* This class implements an imperative programming solution to the

factorial problem using iteration
factorial(n) = n * factorial(n - 1) and factorial(0) = 1 */

public class IterativeFactorial{
public static void main(String[] args)
{

int factorial = 1; // set initial value of factorial to factorial(0)
int iterator = 1; // set initial value of loop iterator to 1
int n = 5; // number whose factorial we are finding

Example continued on next slide

Factorial example revisited (iteration)

while (iterator <= n) {

/* set the new value of the variable factorial to its current

factorial = factorial * iterator++;

} // end of while ()

iterator incremented after
its old value has been used

value times the value of the iterator */

// print out the value of n factorial

System.out.println("The factorial of " + n + " is " + factorial);

} // end of main
} // end of class IterativeFactorial

Factorial example revisited (iteration)

Trace of solution for the number 5
(factorial and iterator are initially 1):

factorial iterator

1 2

2 3

6 4

After first pass
through while loop

Second time
through while loop

24 5
120 6

Fifth time through
while loop

while (iterator <= n)
{

}
factorial = factorial * iterator++;

Factorial example revisited (iteration)

public class IterativeFactorial2{

public static void main(String[] args)

{

int n = 5; // number whose factorial we are finding
int factorial = n; // set initial value of factorial to n
int iterator = n; // set initial value of loop iterator to n
while (iterator > 1) {
/* set the new value of factorial to its current value

times the value of the iterator */
factorial = factorial * --iterator;

} // end of while ()
System.out.println("The factorial of " + n + " is " + factorial);

} // end of main
} // end of class IterativeFactorial2

iterator decremented before
its old value has been used

Factorial example revisited (iteration)

Trace of solution for the number 5

(factorial and iterator are initially 5):

factorial iterator
20 4
60 3
120 2
120 1

After first pass
through while loop

Since we know that factorial(1) = 1, we could
set the boolean expression in the while loop
to (iterator >=2) and save two multiplications
over the previous example

while loop

Fourth time through
while loop

while (iterator > 1)
{

factorial =
}

Third time through

factorial * --iterator;

Factorial example revisited (recursion)

/* This class implements an imperative programming solution to the

factorial problem using recursion.

factorial(n) = n * factorial(n - 1) and factorial(0) = 1 */

public class RecursiveFactorial{

private int factorial = 1;

public int findFactorial(int number)

{ // this method returns the value of the factorial of number

if (number == 0) {

// the factorial of 0 is 1 (base case)

return factorial;

}

Example continued on next slide

Factorial example revisited (recursion)

else {

// the factorial of n is n * factorial(n - 1)

factorial = number * findFactorial(number - 1);

return(factorial);

}
} // end of findFactorial method
public static void main(String[] args) {

int n = 5; // number for which we are finding the factorial
/* Since main is a static method, it cannot call findFactorial() directly

Create a new RecursiveFactorial object in order to call findFactorial() */
RecursiveFactorial fact = new RecursiveFactorial();
System.out.println("The factorial of " + n + " is " + fact.findFactorial(n));
}

} // end of class RecursiveFactorial

Factorial example revisited

•	 Both examples shown above are imperative

programming approaches to solving the factorial

problem (using recursion and iteration)

•	 The declarative approach to the problem given

in lecture 1 follows (uses recursion)

Factorial example revisited (recursion)

Declarative approach (definition using Scheme):

(define (factorial n)

(if (= n 0) 1

(* n (factorial (- n 1)))))

; applying factorial to a particular number:
(factorial 5)
;Value: 120

Encapsulation/Information Hiding

One of the 3 cornerstones of object-oriented programming

•	 use classes and objects
for programming

•	 objects include both
data items and methods
to act on the data

•	 protect data inside an
object (do not allow
direct access)

• use private modifier
for instance variable
declarations

• use public methods to
access data

Formalized Abstraction: ADTs

ADT: Abstract data type

•	 A data type (in Java, a class) that is written using good
information hiding/encapsulation techniques

•	 This Object-Oriented approach is used by several
languages

•	 An ADT provides a public user interface so the user
knows how to use the class
– user interface has descriptions, parameters, and names of

the class’s methods
•	 Changes to a class implementation should not affect

code that uses the class

Formalized Abstraction: ADTs

•	 Method definitions are usually public but specific
implementation details are always hidden from the user

•	 The user cannot see or change the implementation

•	 The user only sees the interface, also called the
application programmer interface (API)

•	 Prevents programming errors (e.g., user inadvertently
changing the value of a public instance variable by
using = instead of == for a comparison)

•	 Sharing API spares an end user from having to read
through source code to understand how a class’s
methods work

Formalized Abstraction: ADTs

To create ADTs in Java that are used by others via an API:

•	 Use the private modifier when declaring instance

variables
• Do not give the user the class definition (.java) file

•	 Do give the user the interface - a file with just the class
and method descriptions and headings
– the headings give the names and parameters of the

methods
– it tells the user how to use the class and its methods

– it is all the user needs to know
– the Java utility javadoc can be used to create the

interface description file

Programming Tips for

Writing Methods

• Use public and private modifiers judiciously

– If a user will need the method, make it part of the
interface by declaring it public

– If the method is used only within the class definition
(i.e., it is a helper method, then declare it private)

•	 Create a main method with diagnostic (test) code
within a class's definition
– run just the class to execute the diagnostic program

(to make sure that it works the way it ought to)
– when the class is used by another program the class's
main is ignored

Testing a Method

•	 Test programs are sometimes called driver programs

•	 Keep it simple: test only one new method at a time
– driver program should have only one untested

method
•	 If method A uses method B, there are two

approaches:
•	 Bottom up

– test method B fully before testing A

Testing a Method

• Top down

– test method A and use a stub for method B
– A stub is a method that stands in for the final version

and does little actual work. It usually does something
as trivial as printing a message or returning a fixed
value. The idea is to have it so simple you are nearly
certain it will work.

Method Overloading

•	 The same method name has more than one
definition within the same class

•	 Each definition must have a different signature

– different argument types, a different number of
arguments, or a different ordering of argument
types

– The return type is not part of the signature and
cannot be used to distinguish between two
methods with the same name and parameter
types

Signature

•	 The combination of method name and number and
types of arguments, in order

• equals(Person) has a different signature than
equals(String)

– same method name, different argument types

• myMethod(1) has a different signature than
myMethod(1, 2)

– same method name, different number of

arguments

Signature

• myMethod(10, 1.2) has a different signature
than myMethod(1.2, 10)
– same method name and number of arguments,

but different order of argument types:
(int, double) vs. (double, int)

Overloading and Argument Type

•	 Accidentally using the wrong datatype as an

argument can invoke a different method than
desired

•	 For example, say we have defined a Pet class
(there’s one defined in the Java text)
–set(int) sets the pet's age in whole years
–set(double) sets the pet's weight in

pounds
–set(String, int, double) sets the

pet's name, age, and weight

Overloading and Argument Type

– You want to set the pet's weight to 6 pounds:

•set(6.0) works as you want because the
argument is type double

•set(6) will set the age to 6, not the weight,
since the argument is type int

•	 If Java does not find a signature match, it
attempts some automatic type conversions,
e.g. int to double

•	 An unwanted version of the method may
execute

Overloading and Argument Type

Still using the Pet example of overloading:
•	 What you want: name "Scamp", weight 2, and age 3

•	 But you make two mistakes:
1. you reverse the age and weight numbers, and
2. you fail to make the weight a type double

•	 Remember: set(String, int, double)
sets the pet's name, age, and weight

• set("Scamp", 2, 3) does not do what you
want

Overloading and Argument Type

• set(String, int, double) sets the pet's

name, age, and weight
• set("Scamp", 2, 3)

– it sets the pet's age = 2 and the weight = 3.0
• Why?

– set has no definition with the argument types
String, int, int

– However, it does have a definition with String,
int, double,
so it promotes the last number, 3, to 3.0 and
executes the method with that signature

Constructors

• A constructor is a special method designed to

initialize instance variables
•	 Automatically called when an object is created using

new

•	 Has the same name as the class
•	 Often overloaded (more than one constructor for the

same class definition)
– different versions to initialize all, some, or none

of the instance variables
– each constructor has a different signature (a

different number or sequence of argument types)

Defining Constructors

•	 Constructor headings do not include the word

void

•	 In fact, constructor headings do not include a
return type

•	 A constructor with no parameters is called a

default constructor

• If no constructor is provided by the class creator,

Java automatically creates a default constructor

– If any constructor is provided, then no constructors

are created automatically

Defining Constructors

Programming Tip

• Include a constructor that initializes all
instance variables

• Include a constructor that has no
parameters (that is, include your own
default constructor)

Constructor Example

public class Person
{

private String firstName;
private String lastName;
private GregorianCalendar dateOfBirth;

. . .
public Person(String fName)
{

firstName = fName;
lastName = null;
dateOfBirth = null;

}
Sample use:

Null is a special constant that
be assigned to any variable of
any class type. It is a place­
holder for an object’s address

Person person1 = new Person(“Eric”);

Constructor Example
{

dateOfBirth = null;
} Sample use:

public Person(String fName, String lName)

firstName = fName;
lastName = lName;

Person person2 = new Person(“Eric”,“LeRouge”);

{

dateOfBirth = dob;
} Sample use:

Person person3 = new Person(“Eric”,“LeRouge”,
new GregorianCalendar(1965, 8, 21, 0, 0, 0));

public Person(String fName, String lName,
GregorianCalendar dob)

firstName = fName;
lastName = lName;

Constructor Example

public Person()
{

firstName = null;
lastName = null;
dateOfBirth = null;

}

Sample use:
Person person4 = new Person();
This is the default constructor

Using Constructors

•	 The keyword new must precede a call to a

constructor
•	 If you want to change values of instance

variables after you have created an object using
a constructor, you must use other methods (e.g.
defined set methods) for the object
– you cannot call a constructor for an object after it is

created
– set methods should be provided for the purpose of

changing values of instance variables

Arrays

•	 An array: a single name for a collection of data values,

all of the same data type
(it is a collection of variables that have the same type)

•	 Arrays are a carryover from earlier programming
languages (e.g. C, C++)

•	 Array: more than a primitive type, less than an object

– they work like objects when used as method arguments

and return types (i.e., arrays are reference types)
–	 they do not have or use inheritance

– they are sort of like a Java class that is not fully

implemented

•	 Arrays are a natural fit for loops, especially for loops

Creating Arrays

• General syntax for declaring an array:

Base_Type[] Array_Name = new

Base_Type[Length];

• Examples:

80-element array with base type char:

char[] symbol = new char[80];

100-element array of doubles:

double[] realNums = new double[100];

90-element array of type Person:

Person[] people = new Person[90];

Three Ways to Use [] (Brackets)

with an Array Name

1. To create a type name, e.g. int[] pressure; creates a name
pressure with the type "int array"
– note that the types int and int array are different
– int array is the type of the name pressure
– the type of the data that can be stored in pressure is int

2. To create a new array, e.g. pressure = new int[100];

3. To name a specific element in the array
- also called an indexed variable, e.g.

pressure[3] = 55;

System.out.println("You entered" +

pressure[3]);

Some Array Terminology

temperature[n + 2]

temperature[n + 2]

temperature[n + 2]

Array name

Index subscript
int,

an int

Indexed variable
element or subscripted variable

Value of the indexed variable

- also called a
- must be an
- or an expression that evaluates to

- also called an

- also called an element of the array

temperature[n + 2] = 32;
Note that "element" may refer to either a single indexed
variable in the array or the value of a single indexed variable.

Array Length

•	 The length of an array is specified by the
number in brackets when it is created with new
– it determines the amount of memory allocated

for the array elements (values)
– it determines the maximum number of elements

the array can hold
• storage is allocated whether or not the elements

are assigned values

Array Length

•	 The array length can be read with the instance
variable length, e.g. the following code
displays the number 20 (the size, or length of the
Person array, morePeople):

Person[] morePeople = new Person[20];

System.out.println(morePeople.length);

•	 The length attribute is established in the
declaration and cannot be changed unless the
array is redeclared

Initializing an Array's Values

in Its Declaration

•	 Array elements can be initialized in the declaration
statement by putting a comma-separated list in braces

•	 Uninitialized elements will be assigned some default
value, e.g. 0 for int arrays

•	 The length of an array is automatically determined
when the values are explicitly initialized in the
declaration

•	 For example:

double[] realNums = {5.1, 3.02, 9.65};

System.out.println(realNums.length);

- displays 3, the length of the array realNums

Subscript Range

• Array subscripts use zero-numbering
– the first element has subscript 0
– the second element has subscript 1
– etc. - the nth element has subscript n-1
– the last element has subscript length-1

• For example:
int[] scores = {97, 86, 92, 71};

Subscript: 0 1 2 3
Value: 97 86 92 71

Subscript out of Range Error

•	 Using a subscript larger than length-1 causes

a run time (not a compiler) error
– an ArrayOutOfBoundsException is thrown

•	 you do not need to catch this exception
•	 you need to fix the problem and recompile your code

•	 Some programming languages, e.g. C and C++,
do not even cause a run time error
– one of the most dangerous characteristics of these

languages is that they allow out of bounds array
indexes

Initializing Array Elements in a Loop

• Array processing is easily done in a loop
• A for loop is commonly used to initialize array elements

• Example:
int i;//loop counter/array index

int[] a = new int[10];

for(i = 0; i < a.length; i++)

a[i] = 0;

– note that the loop counter/array index goes from 0 to
length - 1

– it counts through length = 10 iterations/elements
using the zero-numbering of the array index

Arrays, Classes, and Methods

An array of a class can be declared
and the class's methods applied to
the elements of the array.

public void printFirstNames()
{

int numberOfPeople = 50;
Person[] people = new Person[numberOfPeople];
for (int i = 0; i < numberOfPeople; i++)
{

 people[i] = new Person();

//readInfo allows us to set the attributes of a person

people[i].readInfo();

//writeInfo allows us to print the attributes of a person

System.out.println(people[i].writeInfo());

}
}

each array element is
a Person instance
variable

use the readInfo
method of Person

create an array of
Persons

use the writeInfo
method of Person

Arrays and Array Elements

as Method Arguments

Arrays and array elements can be used with

classes and methods just like other objects

•	 both an indexed element and an array name
can be an argument in a method

•	 methods can return an array value or an
array name

public static void main(String arg[])Indexed
 {
String scoreString = Variables JOptionPane.showInputDialog(ÒEnter your grade\nÓ);
 int firstScore = Integer.parseInt(scoreString);

as Method
Arguments

]
;

 (;)
[i]

 (;)
{

);
}

}
()

{
;

}

nextScore is
an array of
ints

an element of
nextScore is
used as an
argument of
method average

average
method definition Modification of ArgumentDemo

 int[nextScore = new int[3];
 int i
 double possibleAverage;
 for i = 0; i < nextScore.length i++

nextScore = 80 + 10*i;
 for i = 0; i < nextScore.length i++

possibleAverage = average(firstScore, nextScore[i]);
System.out.println("If your score on exam 2 is "

+ nextScore[i]);
 System.out.println("your average will be "

+ possibleAverage

 public static double average int n1, int n2

 return (n1 + n2)/2.0

program in text

When Can a Method Change an

Indexed Variable Argument?

Remember:
• primitive types are call-by-value

– only a copy of the value is passed as an argument in a method
call

– so the method cannot change the value of the indexed variable

• class types are reference types; they pass the address of

the object when they are an argument in a method call

– the corresponding argument in the method definition becomes

another means of accessing the object’s contents (another
“key” for the same mailbox)

– this means the method has access to the object’s contents

– so the method can change the values associated with the

indexed variable if it is a class (and not a primitive) type

Array Names as Method Arguments

When using an entire array as an argument to a
method:

– use just the array name and no brackets (this passes

the memory address of the array’s first element)

– as described in the previous slide, the method has
access to the original array contents and can change
the value of its elements

– the length of the array passed can be different for
each call

• when you define the function you do not know the
length of the array that will be passed

• so use the length attribute inside the method to avoid
ArrayIndexOutOfBoundsExceptions

Example: An Array as an Argument

in a Method Call

public static void
showArray(char[] a)

{
int i;
for(i = 0; i < a.length; i++)

System.out.println(a[i]);
}

the method's argument is
the name of an array of
characters

uses the length attribute
to control the loop
allows different size arrays
and avoids index-out-of-
bounds exceptions

Arguments for the Method main

•	 The heading for the main method shows a
parameter that is an array of Strings:
public static void main(String[] args)

•	 When you run a program from the command
line, all words after the class name will be
passed to the main method in the args array:

java TestProgram Josephine Student

Arguments for the Method main

•	 The following main method in the class
TestProgram will print out the first two
arguments it receives:

{
System.out.println(“Hello “ + args[0] + “ “ + args[1]);

}

public static void main(String[] args)

•	 In this example, the output from the command line
above will be:
Hello Josephine Student

Using = with Array Names:

Remember They Are Reference Types

int[] a = new int[3];

b = a;

a[2] = 10;

2 2

10 10

int[] b = new int[3];
for(int i=0; i < a.length; i++)

a[i] = i;

System.out.println(a[2] + " " + b[2]);

System.out.println(a[2] + " " + b[2]);

The output for this code will be:

This does not create a
copy of array a
b another way of

associated with array a.

If we change a stored value
using a,we retrieve the
changed value when we
use b for access

; it makes

accessing the values

Using == with Array Names:

Remember They Are Reference Types

int i;
int[] a = new int[3];
int[] b = new int[3];
for(i=0; i < a.length; i++)

a[i] = 0;
for(i=0; i < b.length; i++)

b[i] = 0;
if(b == a)

System.out.println("a equals b");
else
System.out.println("a does not equal b");

a and b are both
3-element arrays of ints

all elements of a and b are
assigned the value 0

tests if the
of a

and b are equal,
not if the array

The output for this code will be " a does not equal b"
because the addresses referenced by the arrays are not the same.

addresses

values are equal

Testing Two
Arrays for
Equality

•	 To test two arrays for
equality you need to
define an equals
method that returns
true if and only if the
arrays have the same
length and all
corresponding values
are equal

•	 This code shows an
example of such an
equals method.

)
{

)
;

 {
 //

;

 {

;
;

 }
 }

;
}

public static boolean equa ls(int[] a, int[] b

 boolean match;
 if (a.length != b.length

 match = false
 else

 match = true; tentatively
 int i = 0
 while (match && (i < a.length))

if (a[i] != b[i])
 match = false

i++

 return match

Methods
that Return
an Array

•	 Yet another example
of passing a
reference

•	 Actually, it is the
address of the array
that is returned

•	 The local array name
within main
provides another
way of accessing the
contents of the
original array

{
([])

 {
[] c;

;
(; ;

;
}

]
{

[] [
[;
[;
[
[
[

;
}

}

c, newArray, and
the return type of
vowels are
all the same type:
char array

public class returnArrayDemo

 public static void main String arg

char
 c = vowels()
 for int i = 0 i < c.length i++)
 System.out.println(c[i])

public static char[vowels()

char newArray = new char 5];
newArray 0] = 'a'
newArray 1] = 'e'
newArray 2] = 'i';
newArray 3] = 'o';
newArray 4] = 'u';
return newArray

Read

• Chapter 5 -- sections 5.1 - 5.7

• Chapter 6 -- sections 6.1 - 6.2

