
Harvard-MIT Division of Health Sciences and Technology
HST.952: Computing for Biomedical Scientists

HST 952

Computing for Biomedical Scientists

Lecture 7

Outline

• Information hiding revisited

• Intro to exceptions in java
• Programming examples
• Questionnaire

Information Hiding Revisited

•	 To achieve information hiding goal, need to

make a class’s instance variables private and
provide public accessor methods for retrieving
and setting these variables’ values

•	 For instance variables that have a class type,
this may not be enough!

•	 Variables with primitive types in Java are
passed or returned by value
– a copy of the variable’s value is passed/returned, the

original contents of the variable cannot be modified
by changing this copy

Information Hiding Revisited

•	 In general, class variables are passed or
returned by reference
– a copy of the memory address the variable refers to

is passed, the contents of this memory address can
be altered once this address is known
(Exceptions to this rule in Java are variables of the
String and StringBuffer classes which act like
variables of primitive types when passed/returned)

Information Hiding Revisited

– cloning a variable is one solution to this problem

– a clone has the same contents as the original

variable but a different address in memory

– altering the clone does not affect the original

– classes that allow cloning implement the cloneable

interface (e.g. GregorianCalendar)
– some classes do not allow cloning (do not

implement the cloneable interface) e.g. String,
StringBuffer

Information Hiding Revisited

• Programming example: Person class

Exceptions: Overview

•	 Exceptions give us a way of organizing a
program into sections for the normal case and
the exceptional case
– exception examples:

division by zero

incorrect type of input

•	 Simplifies development, testing, debugging
and maintenance
– errors are easier to isolate

Exceptions: Some Terminology

•	 Throwing an exception: either Java itself or
your code signals that something unusual has
happened

•	 Handling an exception: responding to an
exception by executing a part of the program
specifically written for the exception
– also called catching an exception

Exceptions: Some Terminology

•	 The normal case is handled in a try block

•	 The exceptional case is handled in a catch

block
•	 The catch block takes a parameter of type

Exception
– it is called the catch-block parameter

•	 Exception is a built-in Java class
•	 If an exception is thrown execution in the try

block ends and control passes to the catch
block(s) after the try block

try-throw-catch Threesome

Basic code organization:

try
{
<code to try>

if(test condition)
throw new Exception("Message to display");

<more code>
}
catch(Exception e)
{
}
<exception handling code>

Programming example: restricting the length of an input string

try-throw-catch Threesome

Try block
Statements execute up to the conditional throw
statement

If the condition is true the exception is thrown

– control passes immediately to the catch

block(s) after the try block
Else the condition is false

– the exception is not thrown

– the remaining statements in the try block (those

following the conditional throw) are executed

try-throw-catch Threesome

Catch block

Executes if an exception is thrown
– may terminate execution with exit statement
– if it does not exit, execution resumes after the
catch block

Statements after the Catch block

Executed if either the exception is not thrown or if it is

thrown but the catch block does not exit the program

More about the catch-Block

• Although it may look similar to a method definition

The catch-block is not a method definition!

• Every Exception has a getMessage method
– it retrieves the string given to the exception object when it

was thrown, e.g.
throw new Exception("This message is retrieved");

• A catch-block applies only to an immediately
preceding try block
– if no exception is thrown the catch block is ignored

Predefined Exception Classes

• Exception is the root class of all exceptions

• Many predefined classes throw exceptions
– the documentation or interface will tell you

– the exceptions thrown are often also predefined

• Some common predefined exceptions:
– IOException

– ClassNotFoundException, and
– FileNotFoundException

Documentation for Exception class

java.lang
Class Exception The package which Exception belongs to

Taken from http://java.sun.com/j2se/1.3/docs/api/index.html

java.lang.Object
|
+--java.lang.Throwable

|

+--java.lang.Exception

Ancestor class for all Java classes

Sub-class of Object

All Implemented Interfaces:
Serializable

A Java class cannot be a subclass of more than

To get
around this, Java allows a class to implement
more than one interface. An interface is a

must have.

Sub-class of Throwable

one class, but sometimes we need it to have
properties of more than one class.

property of a class that says what methods it

Documentation for Exception class

Direct Known Subclasses:

AclNotFoundException, ActivationException, AlreadyBoundException,
ApplicationException, AWTException, BadLocationException,
ClassNotFoundException, CloneNotSupportedException, DataFormatException,
ExpandVetoException, FontFormatException, GeneralSecurityException,
IllegalAccessException, InstantiationException,

InterruptedException, IntrospectionException, InvalidMidiDataException,
InvocationTargetException, IOException, LastOwnerException,
LineUnavailableException, MidiUnavailableException, MimeTypeParseException,
NamingException, NoninvertibleTransformException, NoSuchFieldException,
NoSuchMethodException, NotBoundException, NotOwnerException,
ParseException, PrinterException, PrivilegedActionException,
PropertyVetoException, RemarshalException, RuntimeException,

ServerNotActiveException, SQLException, TooManyListenersException,

UnsupportedAudioFileException, UnsupportedFlavorException,

UnsupportedLookAndFeelException, UserException

Documentation for Exception class

public class Exception
extends Throwable

The class Exception and its subclasses are a form of Throwable that indicates
conditions that a reasonable application might want to catch.

Constructor Summary:

Exception()
Constructs an Exception with no specified detail message.

Exception(String s)
Constructs an Exception with the specified detail message.

Documentation for Exception class

Methods inherited from class java.lang.Throwable:

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace,

printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail
public Exception()

Constructs an Exception with no specified detail message.

public Exception(String s)
Constructs an Exception with the specified detail message.
Parameters:

s - the detail message.

Using an Object that May Throw

an Exception

Sample object = new SampleClass();

try

{

<Possibly some code>

object.doStuff();//may throw IOException

<Possibly some more code>

}

catch(IOException e)

{

<Code to handle the IOException, probably
including this line:>
System.out.println(e.getMessage());

}

•	 Predefined exceptions usually include a meaningful message that is retrieved
with getMessage

User-Defined Exception Classes

public class DivideByZeroException extends Exception
{

public DivideByZeroException()
{

super("Dividing by Zero!");
}
public DivideByZeroException(String message)
{

super(message);
}

}

•	 Must be derived from some already defined exception class
•	 Often the only method you need to define is the constructor
•	 Include a constructor that takes a String message argument
•	 Also include a default constructor with a call to super and default

message string

When to Define

Your Own Exception Class

• When you use a throw-statement in your code you

should usually define your own exception class.

•	 If you use a predefined, more general exception class,
then your catch-block will have to be general.

•	 A general catch-block could also catch exceptions
that should be handled somewhere else.

•	 A specific catch-block for your own exception class
will catch the exceptions it should and pass others on
(e.g., DivideByZeroException will only catch
divisions by zero and will ignore
NumberFormatExceptions)

Example:

public double divide(int numerator, int denominator)Using the {

double quotient = SENTINEL;Divide-
ByZero-

try

{

if (denominator == 0)

throw new DivideByZeroException();

Class
Exception quotient = numerator/(double)denominator;

System.out.println(numerator + "/"
+ denominator
+ " = " + quotient);

}

catch(DivideByZeroException e)

{

System.out.println(e.getMessage());
}
return(quotient);

}

Catching an Exception in a Method

other than the One that Throws It

When defining a method you must include a throws-clause to declare any
exception that might be thrown but is not caught in the method.

• Use a throws-clause to "pass the buck" to whatever method calls it (pass
the responsibility for the catch block to the method that calls it)
–	 that method can also pass the buck,

but eventually some method must catch it

•	 This tells other methods
"If you call me, you must handle any exceptions that I throw."

Example: throws-Clause

divide method

•	 May throw a DivideByZeroException in another
method normal that calls it

•	 But the catch block is in main

• So normal must include a throws-clause in the first line of
the method definition:

public void normal() throws
DivideByZeroException

{
<statements to define the normal method>

}

More about Passing the Buck

Good programming practice:

Every exception thrown should eventually be caught in some

method

•	 Normally exceptions are either caught in a catch block or
deferred to the calling method in a throws-clause

• If a method throws an exception, it expects the catch block to

be in that method unless it is deferred by a throws-clause

– if the calling method also defers with a throws-clause, its
calling program is expected to have the catch block, etc.,
up the line all the way to main, until a catch block is
found

p ()
{

);
}

MethodA throws
MyException
but defers
catching it (by
using a throws-
clause:

p)
{

{
()

 }
)

 {

 }
}

Typical Program
Organization for

Exception Handling in
Real Programs

MethodB, which
calls MethodA,
catches
MyException
exceptions:

ublic void MethodA throws MyException

 throw new MyException("Bla Bla Bla"

ublic void MethodB(

 try

 MethodA ;//May throw MyException exception

 catch(MyException e

 <statements to handle MyException exceptions>

Uncaught Exceptions

•	 In any one method you can catch some
exceptions and defer others

•	 If an exception condition occurs but the
exception is not caught in the method that
throws it or any of its calling methods, either:
– the program ends abnormally, or,

– in the case of a GUI using Swing, the

program may become unstable

throws-Clauses in Derived Classes

•	 You cannot add exceptions to the throws-clause of a

redefined method in a derived class
– only exceptions in the throws -clause of the parent class's

method can be in the throws -clause of the redefined
method in the derived class

•	 In other words, you cannot throw any exceptions that are not
either caught in a catch block or already listed in the
throws -clause of the same method in the base class

•	 You can, however, declare fewer exceptions in the throws ­
clause of the redefined method

Multiple Exceptions and

catch Blocks in a Method

•	 Methods can throw more than one exception

•	 The catch blocks immediately following the try block are
searched in sequence for one that catches the exception type
– the first catch block that handles the exception type is the

only one that executes

•	 Specific exceptions are derived from more general types

– both the specific and general types from which they are

derived will handle exceptions of the more specific type

•	 So put the catch blocks for the more specific, derived,
exceptions early and the more general ones later

Exception: Reality Check

•	 Exception handling can be overdone
– use it sparingly and only in certain ways

•	 If the way an exceptional condition is handled
depends on how and where the method is invoked,
then it is better to use exception handling and let
the programmer handle the exception (by writing
the catch block and choosing where to put it)

•	 Otherwise it is better to avoid throwing exceptions

The finally Block

At this stage of your programming you may not have much use for

the finally block, but it is included for completeness - you may

find it useful in the future

• You can add a finally block after the try/catch blocks

• finally blocks execute whether or not catch block(s)
execute

•	 Code organization using finally block:
try block
catch block
finally
{

<Code to be executed whether or not an exception is thrown>
}

Three Possibilities for a try-catch-

finally Block

• The try-block runs to the end and no exception is
thrown.
–	 The finally-block runs after the try-block.

•	 An exception is thrown in the try-block and caught
in the matching catch-block.
–	 The finally-block runs after the catch-block.

•	 An exception is thrown in the try-block and there is
no matching catch-block.
–	 The finally-block is executed before the method ends.

– Code that is after the catch-blocks but not in a finally-

block would not be executed in this situation.

Summary

•	 An exception is an object descended from the Exception

class
•	 Exception handling allows you to design code for the normal

case separately from that for the exceptional case
•	 You can use predefined exception classes or define your own

•	 Exceptions can be thrown by:
–	 certain Java statements
–	 methods from class libraries
–	 explicit use of the throw statement

•	 An exception can be thrown in either
– a try block, or
– a method definition without a try block, but in this case the

call to the method must be placed inside a try block

Summary

•	 An exception is caught in a catch block

•	 When a method might throw an exception but does not have a
catch block to catch it, usually the exception class must be
listed in the throws-clause for the method

•	 A try block may be followed by more than one catch block

– more than one catch block may be capable of handling the
exception

– the first catch block that can handle the exception is the
only one that executes

– so put the most specific catch blocks first and the most
general last

•	 Every exception class has a getMessage method to retrieve
a text message description of the exception caught

Read

• Sections 6.4 - 6.5

• Chapter 7
• Chapter 8

Programming examples

• Exceptions (divide by zero)
• Inheritance (Student & Person classes)

Questionnaire

