
Harvard-MIT Division of Health Sciences and Technology
HST.952: Computing for Biomedical Scientists

HST 952

Computing for Biomedical Scientists

Lecture 8

Outline

• Vectors
• Streams, Input, and Output in Java

• Programming examples

Vectors

• We can think of a vector as an array that can get

larger or smaller when a program is running

•	 Data structure - a construct that allows us to
organize/aggregate data

•	 An array is a static data structure
•	 A vector is a dynamic data structure

Arrays versus Vectors

Arrays	 Vectors
Bad:	 Good :
•	 Size is fixed when declared • Size is not fixed

•	 Inefficient storage: can use a • Better storage efficiency: a

partially full array, but space partially full vector may be
has been allocated for the allocated just the space it needs
full size	 • If one more value needs to be

•	 If one more value needs to added past the maximum size
be added past the maximum the vector size increases
size the array needs to be automatically
redeclared

Good:	 Bad:

• More efficient (faster) • Less efficient (slower) execution

execution • Elements must be class types

•	 Elements can be of any type (primitive types not allowed)

Using Vectors

•	 Vectors are not automatically part of Java

– they are in the util library
– you must import java.util.*

•	 Create a vector with an initial size of 20
elements:
Vector v = new Vector(20);

Vector Initial Capacity vs.

Efficiency

•	 Choosing the initial size of a vector is an
example of a tradeoff
– making it too large wastes allocated memory space

– making it too small slows execution
• it takes time to resize vectors dynamically

•	 Solution?
– optimize one at the expense of the other
– or make good compromises

• choose a size that is not too big and not too small

Vector Syntax

•	 The idea is the same as for arrays, but the syntax is different

•	 As with arrays, the index must be in the range 0 to size-of-the-

vector
Array: a is a String array

a[i] = "Hi, Mom!");

String temp = a[i];

Vector: v is a vector

v.setElementAt("Hi,
Mom!", i);

String temp =
(String)v.elementAt(i);

Instead of the index in
brackets and = for
assignment, use vector
method setElementAt
with two arguments, the
value and the index

elementAt(int index) to
retrieve the value of an element

Note: the cast to String is
required because the base type of
vector elements is Object

Use vector method

Vector Methods

• The vector class includes many useful methods:

– constructors
– array-like methods, e.g. setElementAt &

elementAt

– methods to add elements
– methods to remove elements
– search methods
– methods to work with the vector's size and capacity,

e.g. to find its size and check if it is empty
– a clone method to copy a vector

– see section 10.1 of Savitch text for more details

More Details About Vectors

•	 Vectors put values in successive indexes

– addElement is used to put initial values in a
vector

– new values can be added only at the next higher
index

•	 You can use setElementAt to change the
value stored at a particular index
– setElementAt can be used to assign the value

of an indexed variable only if it has been
previously assigned a value with addElement

Base Type of Vectors

•	 The base type of an array is specified when the

array is declared
– all elements of arrays must be of the same type

•	 The base type of a vector is Object
– elements of a vector can be of any class type

– in fact, elements of a vector can be of different class
types

– it is usually best to have all elements in a vector be
the same class type

– to store primitive types in a vector they must be
converted to a corresponding wrapper class

More Details About Vectors

•	 The following code looks very reasonable but will produce an

error saying that the class Object does not have a method
named length:

Vector v = new Vector()

String greeting = "Hi, Mom!";

v.addElement(greeting);

System.out.println("Length is " +

(v.elementAt(0)).length());

• String, of course, does have a length method, but Java sees
the type of v.elementAt(0) as Object, not String

•	 Solution? Cast v.elementAt(0) to String:

System.out.println("Length is " +

(String)(v.elementAt(0)).length();

Vector Size Versus Vector Capacity

•	 Be sure to understand the difference between
capacity and size of a vector:
–	capacity is the declared size of the vector

• the current maximum number of elements

– size is the actual number of elements being used

• the number of elements that contain valid values, not

garbage
• remember that vectors add values only in successive

indexes

•	 Loops that read vector elements should be limited by
the value of size, not capacity, to avoid reading
garbage values

Increasing Storage Efficiency of

Vectors

•	 A vector automatically increases its size if elements
beyond its current capacity are added

•	 But a vector does not automatically decrease its size if
elements are deleted

•	 The method trimToSize() shrinks the capacity of
a vector to its current size so there is no extra, wasted
space
– the allocated space is reduced to whatever is

currently being used

• To use storage more efficiently, use trimToSize()

when a vector will not need its extra capacity later

More Details About Vectors

• The method clone is used to make a copy of a

vector but its return type is Object, not Vector
– of course you want it to be Vector, not Object

• So, what do you do?

This just makes otherV
another name for the vector
v (there is only one copy of
the vector object and it now
has two names referring to
the same location/address in
memory)

– Cast it to Vector

Vector v = new Vector(10);

Vector otherV;

otherV = v;

Vector otherV2 = (Vector)v.clone();

This creates a copy of v
with a different name, otherV2
and a different address in memory

second

Protecting Private Variables

•	 Be careful not to return addresses of private vector
variables, otherwise calling methods can access them
directly
–	 "Information Hiding" is compromised

•	 To protect against it, return a copy of the vector
– use clone as described in the previous slide

•	 But that's not all:

– if the elements of the vector are class (and not primitive)

types, they may not have been written to pass a copy

–	 they may pass their address

– so additional work may be required to fix the accessor
methods (have accessor methods return clones)

Programming example

Input/Output (I/O) Overview

•	 In this context it is input to and output from
programs

•	 Input can be from keyboard or a file
•	 Output can be to display (screen) or a file

•	 Advantages of file I/O
– permanent copy
– output from one program can be input to another
– input can be automated (rather than entered

manually)

Streams

•	 Stream: an object that either delivers data to its

destination (screen, file, etc.) or that takes data from a
source (keyboard, file, etc.)
– it acts as a buffer between the data source and destination

•	 Input stream: a stream that provides input to a program

•	 Output stream: a stream that accepts output from a
program
–	System.out is an output stream
–	System.in is an input stream

•	 A stream connects a program to an I/O object

–	System.out connects a program to the screen
–	System.in connects a program to the keyboard

Binary Versus Text Files

•	 All data and programs are ultimately just zeros and ones

–	 each digit can have one of two values, hence binary
–	 bit is one binary digit, byte is a group of eight bits

• In text files: the bits represent printable characters
– one byte per character for ASCII, the most common code
–	 for example, Java source files are text files

–	 so is any file created with a "text editor"
•	 In binary files: the bits represent other types of encoded

information, such as executable instructions or numeric data
–	 these files are easily read by the computer but not humans

–	 they are not intelligible to a human when printed

Binary Versus Text Files

• Text files are more readable by humans
• Binary files are more efficient

– computers read and write binary files more easily than text
• Java binary files are portable

– they can be used by Java on different machines
– Reading and writing binary files is normally done by a

program
– text files are used only to communicate with humans

Java Text Files Java Binary Files
• Source files • Executable files (created by

• Occasionally input files compiling source files)

• Occasionally output files • Usually input files
• Usually output files

Text File I/O

•	 Important classes for text file output (to the file)

–	PrintWriter, FileWriter, BufferedWriter
–	FileOutputStream

•	 Important classes for text file input (from the file):
–	BufferedReader
–	FileReader

•	 Note that FileOutputStream and FileReader are used
only for their constructors, which can take file names as
arguments.
– PrintWriter and BufferedReader cannot take file

names as arguments for their constructors.
•	 To use these classes your program needs a line like the

following:
import java.io.*;

Every File Has Two Names

• The code to open the file creates two
names for an output file
– the name used by the operating system

• e.g., out.txt

– the stream name
• e.g., outputStream

• Java programs use the stream name

Text File Output

•	 Binary files are more efficient for Java to
process, but text files are readable by humans

•	 Java allows both binary and text file I/O

•	 To open a text file for output: connect a text file
to a stream for writing
– e.g., create a stream of the class PrintWriter

and connect it to a text file

Text File Output

•	 For example:

PrintWriter outputStream = new PrintWriter(new

FileOutputStream("out.txt"));

•	 Then you can use print and println to
write to the file (convenient)
– The text lists some other useful PrintWriter

methods

Closing a File

• An output file should be closed when
you are done writing to it (and an input
file should be closed when you are
done reading from it)

• Use the close method of the class

• If a program ends normally it will
close any files that are open

Closing a file

If a program automatically closes files when it
ends normally, why close them with explicit calls
to close?
Two reasons:

1. 	To make sure it is closed if a program ends
abnormally (the file could get damaged if it is left
open).

2. 	A file that has been opened for writing must be
closed before it can be opened for reading.

Text File Input

•	 To open a text file for input: connect a text file to a stream for

reading
–	 use a stream of the class BufferedReader and connect it to a text file
– use the FileReader class to connect the BufferedReader object to

the text file

•	 For example:

BufferedReader inputStream =

new BufferedReader(new FileReader("data.txt"));

• Then:
–	 read lines (Strings) with BufferedReader’s readLine method
– BufferedReader has no methods to read numbers directly, so read

numbers as Strings and then convert them
–	 read a single char with BufferedReader’s read method

Input File Exceptions

• A FileNotFoundException is
thrown if the file is not found when an
attempt is made to open a file

• Most read methods throw IOException

– we have to write a catch block for it

• If a read goes beyond the end of the file an
EOFException is thrown

Handling IOException

• IOException cannot be ignored

– either handle it with a catch block

– or defer it with a throws-clause

Put code to open a file and read/write to it in

a try-block and write a catch-block for this

exception :

catch(IOException e)
{

System.out.println(“Problem…”);

}

Testing for the End of an Input File

•	 A common programming situation is to read data from
an input file but not know how much data the file
contains

•	 In these situations you need to check for the end of the
file

•	 There are three common ways to test for the end of a
file:
1. 	Put a sentinel value at the end of the file and test for it.

2. 	Throw and catch an end-of-file exception.
3. 	Test for a special character that signals the end of the file

(text files often have such a character).

Testing for End of File in a Text File

• There are several ways to test for end of file. For

reading text files in Java you can use this one:

– Test for a special character that signals the end of the file

• When readLine tries to read beyond the end of a text
file it returns the special value null
– so you can test for null to stop processing a text file

• read returns -1 when it tries to read beyond the end of
a text file
– the int value of all ordinary characters is nonnegative

Programming example

Reading input from one file and writing
output to another

Reading Parts of a String

• There are BufferedReader methods to read a line

and a character, but not just a single word
• StringTokenizer can be used to parse a line into

words
– it is in the util library so you need to import
java.util.*

– some of its useful methods are shown in the text

• e.g. test if there are more tokens

– you can specify delimiters (the character or

characters that separate words)

• the default delimiters are "white space" (space, tab, and
newline)

Example: StringTokenizer

• Display the words separated by any of the following
characters: space, new line (\n), period (.) or comma (,).

String inputLine = KeyboardInput.readLine();
StringTokenizer wordFinder =
new StringTokenizer(inputLine, " \n.,");
//the second argument is a string of the 4 delimiters
while(wordFinder.hasMoreTokens())
{

System.out.println(wordFinder.nextToken());
}

Question
2b
or
!tooBee

Entering "Question,2b.or !tooBee."
gives this output:

Warning: Overwriting a File

•	 Opening a file creates an empty file

•	 Opening a file creates a new file if one does
not already exist

• Opening a file that already exists eliminates

the old file and creates a new, empty one

– data in the original file is lost

•	 How to test for the existence of a file and
avoid overwriting it is covered in section 9.3
of the text, which discusses the File class

The File Class

•	 Acts like a wrapper class for file names

•	 A file name like "out.txt" has only String

properties
•	 But a file name of type File has some very

useful methods
–	exists: tests to see if a file already exists
– canRead: tests to see if the operating system will

let you read a file
• FileInputStream and
FileOutputStream have constructors that
take a File argument as well as constructors
that take a String argument

Summary

• Text files contain strings of printable

characters; they look intelligible to humans
when opened in a text editor.

• Binary files contain numbers or data in
non-printable codes; they look
unintelligible to humans when opened in a
text editor.

• Java can process both binary and text files
for I/O

Summary

• Always check for the end of the file when
reading from a file. The way you check for
end-of-file depends on the method you use
to read from the file.

• A file name can be read from the keyboard
into a String variable and the variable
used in place of a file name.

Programming example

Want to create a simple parser that can read a boolean
expression typed from the keyboard of the form:

true and true

true and false

true or true

true or false

not true

not false, etc.

and print out the truth value of the expression

Read

• Chapter 9

• Chapter 10

