Harvard-MIT Division of Health Sciences and Technology
HST.952: Computing for Biomedical Scientists

HST 952

Computing for Biomedical Scientists
Lecture 8

Outline

 Vectors
» Streams, Input, and Output 1n Java

* Programming examples

Vectors

We can think of a vector as an array that can get
larger or smaller when a program 1s running

Data structure - a construct that allows us to
organize/aggregate data

An array 1s a Static data structure

A vector 1s a dynamic data structure

Arrays versus Vectors

Arrays Vectors
Bad: Good :

e Size 1s fixed when declared ¢ Size 1s not fixed

» Inefficient storage: canuse a < Better storage efficiency: a
partially full array, but space partially full vector may be

has been allocated for the allocated just the space it needs
full size * If one more value needs to be
 If one more value needs to added past the maximum size
be added past the maximum the vector size increases
size the array needs to be automatically
redeclared
Good: Bad.:
* More efficient (faster) » Less efficient (slower) execution
execution » Elements must be class types

« Elements can be of any type (primitive types not allowed)

Using Vectors

* Vectors are not automatically part of Java
— they are in the util library

— you must import java.util.*

e Create a vector with an 1nitial size of 20
elements:
Vector v = new Vector (20) ;

Vector Initial Capacity vs.
Efficiency

* Choosing the 1nitial size of a vector 1s an
example of a tradeoff
— making 1t too large wastes allocated memory space

— making 1t too small slows execution

* 1t takes time to resize vectors dynamically

* Solution?
— optimize one at the expense of the other

— or make good compromises
 choose a size that 1s not too big and not too small

Vector Syntax

» The 1dea 1s the same as for arrays, but the syntax 1s different

e As with arrays, the index must be 1n the range 0 to size-of-the-
vector

Array: a is a String array Vector: v 1s a vector

v.setElementAt ("H1,

a[i] = "Hi, Mom!"); //’mel", 1);
String temp =
String temp = af[i1]; (String)v.elementAt (1) ;

\

Use vector method
elementAt (int index) to

retrieve the value of an element

Instead of the index in
brackets and = for
assignment, use vector
method setElementAt
with two arguments, the
value and the index

Note: the cast to Stringis

required because the base type of
vector elements is Objectl]

Vector Methods

* The vector class includes many useful methods:

— constructors

— array-like methods, €.g. setElementAt &
elementAt

— methods to add elements
— methods to remove elements
— search methods

— methods to work with the vector's size and capacity,
e.g. to find its size and check if 1t is empty

— a clone method to copy a vector

— see section 10.1 of Savitch text for more details

More Details About Vectors

* Vectors put values 1n successive indexes

— addElement 1s used to put initial values 1n a
vector

— new values can be added only at the next higher
index

* You can use setElementAt to change the
value stored at a particular index

— setElementAt can be used to assign the value

of an indexed variable only if 1t has been
previously assigned a value with addElement

Base Type of Vectors

» The base type of an array 1s specified when the
array 1s declared

— all elements of arrays must be of the same type

» The base type of a vector 1s Object

— elements of a vector can be of any class type

— 1n fact, elements of a vector can be of different class

lypes

— 1t 1s usually best to have all elements 1n a vector be
the same class type

— to store primitive types in a vector they must be
converted to a corresponding wrapper class

More Details About Vectors

* The following code looks very reasonable but will produce an

error saying that the class Object does not have a method
named length:

Vector v = new Vector ()

String greeting = "Hi, Mom!";

v.addElement (greeting) ;

System.out.println ("Length 1s " +
(v.elementAt (0)) .length());

String, of course, does have a 1ength method, but Java sees
the type of v.elementAt (0) as Object,not String
Solution? Cast v.elementAt (0) to String:

System.out.println ("Length 1s " +
(String) (v.elementAt (0)) .length () ;

Vector Size Versus Vector Capacity

 Be sure to understand the difference between
capacity and size of a vector:

— capacity 1s the declared size of the vector

e the current maximum number of elements

— size 1s the actual number of elements being used

* the number of elements that contain valid values, not
garbage

e remember that vectors add values only 1n successive
indexes

* Loops that read vector elements should be limited by
the value of size, not capacity, to avoid reading

garbage values

Increasing Storage Efficiency of
Vectors

A vector automatically increases its size 1f elements
beyond its current capacity are added

But a vector does not automatically decrease its size 1f
clements are deleted
The method trimToSize () shrinks the capacity of

a vector to 1ts current size so there 1s no extra, wasted
space

— the allocated space 1s reduced to whatever 1s
currently being used

To use storage more efficiently, use trimToSize ()
when a vector will not need its extra capacity later

More Details About Vectors

* The method clone 1s used to make a copy of a
vector but its return type 1s Object, not Vector

— of course you want it to be Vector, not Object

* So, what do you do?
— Cast 1t to Vector

Vector v = new Vector (10);

Vector otherV;
otherV = v;

This just makes otherv
another name for the vector
v (there is only one copy of
the vector object and it now
has two names referring to
the same location/address in
memory)

////VV%ctor otherV2 = (Vector)v.clone();

This creates a second copy of v
with a different name, otherv?2

and a different address in memory

Protecting Private Variables

Be careful not to return addresses of private vector
variables, otherwise calling methods can access them
directly

— "Information Hiding" is compromised

To protect against it, return a copy of the vector
— use clone as described in the previous slide

But that's not all:

— 1f the elements of the vector are class (and not primitive)
types, they may not have been written to pass a copy

— they may pass their address

— so0 additional work may be required to fix the accessor
methods (have accessor methods return clones)

Programming example

Input/Output (I/0) Overview

In this context 1t 1s input to and output from
programs

Input can be from keyboard or a file

Output can be to display (screen) or a file
Advantages of file I/0

— permanent copy
— output from one program can be input to another

— 1nput can be automated (rather than entered
manually)

Streams

Stream: an object that either delivers data to its
destination (screen, file, etc.) or that takes data from a
source (keyboard, file, etc.)

— 1t acts as a buffer between the data source and destination
Input stream: a stream that provides input to a program

Output stream: a stream that accepts output from a
program
— System.out 1s an output stream

— System.in 1s an input stream

A stream connects a program to an I/O object
— System.out connects a program to the screen

— System. in connects a program to the keyboard

Binary Versus Text Files

All data and programs are ultimately just zeros and ones
— each digit can have one of two values, hence binary
— bit 1s one binary digit, byte 1s a group of eight bits
In fext files: the bits represent printable characters
— one byte per character for ASCII, the most common code
— for example, Java source files are text files
— 50 1s any file created with a "text editor"

In binary files: the bits represent other types of encoded
information, such as executable instructions or numeric data

— these files are easily read by the computer but not humans

— they are not intelligible to a human when printed

Binary Versus Text Files

» Text files are more readable by humans

* Binary files are more efficient

— computers read and write binary files more easily than text

« Java binary files are portable

— they can be used by Java on different machines

— Reading and writing binary files is normally done by a

program

— text files are used only to communicate with humans

Java Text Files

* Source files
e Occasionally input files
e QOccasionally output files

Java Binary Files

Executable files (created by
compiling source files)

Usually input files
Usually output files

Text File I/O

Important classes for text file outputi(to the file)

— PrintWriter, FileWriter, BufferedWriter
— FileOutputStream

Important classes for text file input((from the file):
— BufferedReader

— FileReader

Note that FileOutputStream and FileReader are used

only for their constructors, which can take file names as
arguments.

— PrintWriter and BufferedReader cannot take file
names as arguments for their constructors.

To use these classes your program needs a line like the
following:

import java.1o0.*;

Every File Has Two Names

* The code to open the file creates two
names for an output file

— the name used by the operating system
°¢c.g., out.txt

— the stream name
°*¢c.g., outputStream

 Java programs use the stream name

Text File Output

* Binary files are more efficient for Java to
process, but text files are readable by humans

 Java allows both binary and text file I/O

* To open a text file for output: connect a text file
to a stream for writing

— e.g., create a stream of the class PrintWriter
and connect it to a text file

Text File Output

* For example:

PrintWriter outputStream = new PrintWriter (new
FileOutputStream("out.txt"));

 Then you canuse print and println to

write to the file (convenient)

— The text lists some other useful PrintWriter
methods

Closing a File

* An output file should be closed when
you are done writing to 1t (and an input
file should be closed when you are
done reading from it)

e Use the c1ose method of the class

 If a program ends normally it will
close any files that are open

Closing a file

If a program automatically closes files when it

ends normally, why close them with explicit calls
to close?

Two reasons:

1. To make sure it 1s closed 1f a program ends
abnormally (the file could get damaged 1f 1t 1s left
open).

2. A file that has been opened for writing must be
closed before 1t can be opened for reading.

Text File Input

To open a text file for input: connect a text file to a stream for
reading
— use a stream of the class Buf feredReader and connect it to a text file
— use the FileReader class to connect the Buf feredReader object to
the text file
For example:
BufferedReader inputStream =

new BufferedReader (new FileReader ("data.txt"));

Then:

— read lines (Strings) with Buf feredReader’s readLine method

— BufferedReader has no methods to read numbers directly, so read
numbers as St rings and then convert them

— read a single char with Buf feredReader’s read method

Input File Exceptions

e AFileNotFoundException 1S

thrown if the file 1s not found when an
attempt 1s made to open a file

* Most read methods throw TOException

— we have to write a catch block for it

 If a read goes beyond the end of the file an
EOFException 1s thrown

Handling IOException

« TOException cannot be 1ignored
— either handle 1t with a catch block
— or defer 1t with a throws-clause
Put code to open a file and read/write to 1t 1n
a try-block and write a catch-block for this
exception :
catch (IOException e)

{

System.out.println (“Problem..”) ;

Testing for the End of an Input File

* A common programming situation 1s to read data from
an mput file but not know how much data the file
contains

 In these situations you need to check for the end of the
file

* There are three common ways to test for the end of a
file:
1. Put a sentinel value at the end of the file and test for it.
2. Throw and catch an end-of-file exception.

3. Test for a special character that signals the end of the file
(text files often have such a character).

Testing for End of File 1n a Text File

* There are several ways to test for end of file. For
reading text files in Java you can use this one:

— Test for a special character that signals the end of the file

* When readLine tries to read beyond the end of a text
file 1t returns the special value nul 1[0

— so you can test for null to stop processing a text file

e read returns -1 when it tries to read beyond the end of
a text file
— the int value of all ordinary characters 1s nonnegative

Programming example

Reading input from one file and writing
output to another

Reading Parts of a String

* There are Buf feredReader methods to read a line
and a character, but not just a single word

« StringTokenizer can be used to parse a line into
words

—1t1s in the ut i1 library so you need to import
Java.util.*

— some of 1its useful methods are shown in the text
e ¢.g. test if there are more tokens
— you can specify delimiters (the character or
characters that separate words)

e the default delimiters are "white space" (space, tab, and
newline)

Example: StringTokenizer

» Display the words separated by any of the following
characters: space, new line (\n), period (.) or comma (,).

String 1nputlLine = KeyboardInput.readLine () ;

StringTokenizer wordFinder =
new StringTokenizer (inputLine, " \n.,");
//the second argument is a string of the 4 delimiters

while (wordFinder.hasMoreTokens ())

{

System.out.println (wordFinder.nextToken());
}
Question
. n ' n [2b
Entering "Question, 2b.or !tooBee. 5;77or
gives this output: t ooBee

Warning. Overwriting a File

Opening a file creates an empty file

Opening a file creates a new file 1f one does
not already exist

Opening a file that already exists eliminates
the old file and creates a new, empty one
— data 1n the original file is lost

How to test for the existence of a file and

avold overwriting 1t 1s covered in section 9.3
of the text, which discusses the File class

The File Class

* Acts like a wrapper class for file names

» A file name like "out . txt" hasonly String
properties
» But a file name of type F'i1le has some very
useful methods
— exists: tests to see if a file already exists

— canRead: tests to see 1f the operating system will
let you read a file

e FileInputStream and
F'ileOutputStream have constructors that
take a F'i 1e argument as well as constructors
that take a St ring argument

Summary

 Text files contain strings of printable
characters; they look intelligible to humans

when opened 1n a text editor.

* Binary files contain numbers or data in
non-printable codes; they look
unmntelligible to humans when opened 1n a

text editor.

 Java can process both binary and text files
for I/0

Summary

* Always check for the end of the file when
reading from a file. The way you check for
end-of-file depends on the method you use
to read from the file.

* A file name can be read from the keyboard
into a St ring variable and the variable

used 1n place of a file name.

Programming example

Want to create a simple parser that can read a boolean
expression typed from the keyboard of the form:

true and true
true and false
true or true
true or false
not true

not false, etc.

and print out the truth value of the expression

Read

» Chapter 9
* Chapter 10

