
HST 952 Fall 2002

Project

The project builds upon the database you designed in Homeworks 8 and 9. It also will
utilize many of the skills you have developed in previous segments of this course.

You will develop a part of the laboratory information system. The functionality you will
add is the ability to view a patient’s test results and perform rudimentary decision
support using the database. You do not need to add functionality to place orders so you
should not have to implement classes you do not need.

1.	 If your schema does not yet support it, change the schema so that patient test
orders and results are stored as test codes instead of names. A set of codes is
provided in a table on a later page. You should also add data about patients from the
Sample Patient file. This has a little more data than was given in Homework 9. (5
points)

2.	 Create Java classes for entities you had created in your LIS E-R diagram to support
viewing of test results. Possible classes may be Test, Patient, Result, etc. The actual
set of classes will depend on your E-R and database design. The classes must
contain variables for each of the attributes of an entity and must have get/set
functions for each of the attributes. Your E-R diagram should guide you in designing
the classes. The relationships can be expressed as attributes of a class. For
example, the relationship that a Patient has many tests can be expressed as follows:

public class Patient {
private String patient_id;
private String first_name;
private Vector tests;

// constructor

// see below for explanation of db parameter

public Patient(LIS_Database db) {

}

// load the orders from the database

public void getTests() {

Tests t = db.getTestsForPatient(this);
// add them to our tests vector

}

public void addTest(Test t) {
tests.add(t);

}
}

(25 points)

3. Design a class called LIS_Database that has public functions for the following

a. Managing the connection to the database

1

fleach
Harvard-MIT Division of Health Sciences and Technology
HST.952: Computing for Biomedical Scientists

HST 952 Fall 2002

b. Handling all input and output from the database.

The purpose of this class is to hide from the other classes of your application,
such as Patient and Test, all the ugly details of how to deal with the database
and how the storage is managed. The decoupling of classes from the database
allows you to switch databases or make changes in your database design with
minimal effects on the rest of your application.

An example stub of the class is provided. You may need different method
signatures than the ones in the example below. You will probably need to add
other public and private functions.

public class LIS_Database {
private Connection conn;
private String connection_url; // for the database

// opens a connection to the database

public void open() {

}

// closes the connection to the database

public void close() {

}

public Patient getPatient(String id) {

}

public void addPatient(Patient pat) {

}

// add result for a test

public void addResult(Patient pat, Test test, float r) {

}

}

(15 points)

Write Java programs described below that utilizes the above classes. Not all of the
functionality required can be handled by SQL so you may have to implement java
algorithms for some of them.

4.	 Find all patients whose serum potassium value was above normal and whose next
serum potassium value (measured between 7 and 14 days after the first one) has
not decreased. Send the following alert to the physician who ordered the test.

Patient <Insert Patient’s Name Here> potassium not improving.

<Test name> <Test result> <Date/time for second test>

<Test name> <Test result> <Date/time for first test>

The alert must be sent by e-mail. See the sample program later in this document

as an example of how to send e-mail from a java program. Change the e-mail

address to your own for testing purposes.

(30 points)

5.	 Dr. Bean Counter would like to view all the tests for the month in an organized
manner. He would like a program that sorts tests by analytes and by sample types.

2

01
02
03
04
05
06
07
08
09

HST 952 Fall 2002

The table below provides the Analytes and Sample Types for each of the tests.
Write a program that takes as a command-line parameter the format of the report
(i.e., organized by analyte or sample type). The output should consist of Patient
name, test name, test result, and analyte or sample type.

Hint: you could store the table below as a new table in your database.

(25 points)

Test name Test
code

Analyte Sample
type

Serum sodium Sodium Serum
Serum potassium Potassium Serum
Total cholesterol Cholesterol Serum
Serum HCG HCG Serum
Hemoglobin Hemoglobin Whole blood
INR Prothrombin Whole blood
Blood urea nitrogen Urea Whole blood
Red blood cell (RBC) count RBC Whole blood
White blood cell (WBC)
count

WBC Whole blood

Urine Sodium 10 Sodium Urine

Please mail all your database meta, java source code, and output of the programs to
ta952@dsg.harvard.edu

Hint: Good documentation of software makes us happy ☺

SAMPLE CODE FOR SENDING E-MAIL

import java.net.*;
import java.io.*;

public class SendAlertEmail {

public static void main (String[] args) {

Socket socketSmtpServer = null;

DataOutputStream dos = null;

BufferedReader dis = null;

// put your smtp server name between the quotes e.g. "smtp.harvard.edu"

String smtpServerName = " ";

// put your login name on that server between the quotes below

String strMyName = " ";

String strBuf; // stores messages from the SMTP server

int portNumToListenTo = 25;

/* generally, SMTP servers listen for connections on port 25, so

3

HST 952 Fall 2002

to establish a connection to an SMTP host, we need to create
a TCP/IP socket that is connected to port 25 of the SMTP host */

try {
/** Establish a TCP/IP connection with the SMTP server you'll

be using to send your e-mail */
socketSmtpServer = new Socket(smtpServerName, portNumToListenTo);
dos = new DataOutputStream(socketSmtpServer.getOutputStream());
dis = new BufferedReader(new

InputStreamReader(socketSmtpServer.getInputStream()));
/** Done establishing the TCP/IP connection */

/** Log in to the SMTP server */

strBuf = dis.readLine();

System.out.println(strBuf);

// The HELO command identifies you to the SMTP server

dos.writeBytes("HELLO " + strMyName + "\n");

strBuf = dis.readLine();

System.out.println(strBuf);

// The RSET command resets the state of the SMTP server

dos.writeBytes("RSET\n");

strBuf = dis.readLine();

System.out.println(strBuf);

/** Done logging in to server */

/** Provide return and delivery addresses for your e-mail alert */

// replace you@youraddress.com with your valid e-mail address

// this will not work if you use an invalid e-mail address

dos.writeBytes("MAIL FROM:<you@youraddress.com>\n");

strBuf = dis.readLine();

System.out.println(strBuf);

// replace you@youraddress.com with your valid e-mail address

dos.writeBytes("RCPT TO:<you@youraddress.com>\n");

strBuf = dis.readLine();

System.out.println(strBuf);

/** Done providing return and delivery addresses */

/** Construct data section of the e-mail alert including headers */

dos.writeBytes ("DATA\n");

strBuf = dis.readLine();

System.out.println(strBuf);

// create message headers

/* Replace To: message with the appropriate physician's

first name and last name and put your e-mail address

in the angle brackets */

dos.writeBytes ("To: Physicianfirstname Physicianlastname "

+ "<physician@physiciansaddress.com>\n");

/* Replace From: message with your first name and last name
and put your e-mail address in the angle brackets */

dos.writeBytes ("From: Yourfirstname Yourlastname "
+ "<you@youraddress.com>\n");

dos.writeBytes ("Subject: Medical alert about your patient!\n");
dos.writeBytes("Content-Type: text/plain; "

+ "charset=\"us-ascii\"\n\n");

// create message body

4

HST 952 Fall 2002

dos.writeBytes("Your patient: <name of patient here> has elevated "
+ "potassium levels!\n");

// indicate end of e-mail message body

dos.writeBytes("\n.\n");

// read line from SMTP server after indicating end of message body

strBuf = dis.readLine();

System.out.println(strBuf);

/** Done constructing data section of the e-mail alert */

/** wrap up e-mail session with SMTP server */

dos.writeBytes("QUIT\n");

strBuf = dis.readLine();

System.out.println(strBuf);

dos.close();

dis.close();

socketSmtpServer.close();

System.out.println("Done with e-mail session");

/** Done with e-mail session */

}
catch (UnknownHostException e) {

System.out.println("Host " + smtpServerName + " unknown");
}
catch (IOException e) {

System.out.println(e);
}

}
}

5

