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Modeling: different depending 
on decision-making and policy 

 How to model for science  
 Conducting validation and verification 
 Understanding large-scale, complex 

physical processes requires 
increasingly elaborate modeling, with 
associated validation, verification, 
truth issues (Oreskes) 
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 All models are wrong, some models 
are useful. 
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Types of models 
 Simple box models 
 Optimization models 
 System dynamics 
 Conceptual models/frameworks 
 Natural system models 
 Integrated assessment models 
 Life-cycle analysis models 
 Mental models 

 
 

Museum of Science Visit: Many more! …Problem Set #1 
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Policy Applications for Models 
 Agenda-setting 
 Screening and assessment 
 Scenario evaluation 
 Improving understanding 
 Guiding negotiations 
 Decision-making tools 
 Informing the public 
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Meta-issues 

 Scale 
 Uncertainty 
 Boundaries 
 Complexity 
 Transparency 
 Normative considerations 
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Models, Verification, Validation 

7

© Elsevier. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Oberkampf, William L., and Timothy G. Trucano. "Verification and Validation in
Computational Fluid Dynamics." Progress in Aerospace Sciences 38, no. 3 (2002): 209-72.

http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1016/S0376-0421(02)00005-2
http://dx.doi.org/10.1016/S0376-0421(02)00005-2


The Modeling Process 

From Sargent, 1998 

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Sargent, Robert G. "Verification and Validation of Simulation Models." In Proceedings
of the 30th conference on Winter Simulation, pp. 121-30. IEEE Computer Society Press, 1998.
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Steps in model formulation (a 
science perspective) 
 1. Defining the purpose of the model 
 2. Determining scales of interest 
 3. Determining the dimension of the model 
 4. Selecting processes 
 5. Selecting variables 
 6. Selecting a computer architecture 
 7. Coding the model 
 8. Optimizing the model 
 9. Time steps and intervals 
 10. Initial conditions 
 11. Boundary conditions 
 12. Input data 
 13. Ambient data 
 14. Interpolating data and model results 
 15. Statistics and graphics 
 16. Simulations 
 17. Sensitivity tests 
 18. Improving the model 

[from Jacobson, Fundamentals in Atmospheric Modeling] 

Design  

Logistics 

Inputs and data 

Analysis and evaluation 

Iteration and feedback 
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Model Design 
 1. Defining the purpose of the model 

 Need to take into account users and their views 
 Understanding goals of the exercise 

 2. Determining scales of interest 
 Match between policy scale and physical scale 

 3. Determining the dimension of the model 
 How much complexity is necessary for science? For policy?  

 4. Selecting processes 
 What processes are decision-relevant? 

 5. Selecting variables 
 Which variables are potentially controllable and which are not? 

 

 

10



Design 
 “A model should be developed for a specific 

purpose (or application) and its validity 
determined with respect to that purpose. If the 
purpose of a model is to answer a variety of 
questions, the validity of the model needs to 
be determined with respect to each question.” 
(Sargent, 1998) 
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Logistics 
 6. Selecting a computer architecture 

 Will others be able to use the model easily? 
 Excel vs. Matlab vs. Fortran…. 

 7. Coding the model 
 Transparency becomes important 

 8. Optimizing the model 
 Jacobson means computationally… 
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Inputs and Data 
 9. Time steps and intervals 

 Matching the temporal and spatial scale to appropriate decision-
making scales 

 10. Initial conditions 
 Data constraints and practical considerations for data selection 

 11. Boundary conditions 
 Defining what’s “in” and what’s “out” is in practice a science-policy 

negotiation 

 12. Input data 
 Is itself a model construction 

 13. Ambient data 
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Analysis and evaluation 
 14. Interpolating data and model results 

 Matching scale of analysis with scale of decision-making 

 15. Statistics and graphics 
 Comprehension and communication 

 16. Simulations 
 Scenarios, hypotheticals, policy options? 

 17. Sensitivity tests 
 How to consider uncertainty, and how to present it? How will 

uncertainties be understood? 
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Iteration and Feedback 
 18. Improving the Model 

 One of most crucial steps 

15



Validation and Verification  
 Verification: characterization of 

numerical approximation errors 
associated with a simulation 
 Did you build the model right? 

 Validation: assessment of model 
accuracy by way of comparison of 
simulation results with experimental 
measurements 
 Did you build the right model? 

 Uncertainty quantification 

See: Roy and Oberkampf, 2011; Sargent, 1998 
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Methods for V&V 

 V&V as part of model development 
process 

 Independent Verification & Validation 
 Performed by a third party 
 Can include accreditation 
 Can be costly, time consuming 

 Scoring model according to 
performance on category scales 
 More on this approach when we talk 

about NASA credibility scale 
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Standards 

 Degree of V&V required can vary by 
model type 

 IEEE standard for V&V processes:  

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Source: "IEEE Standard for System and Software Verification and Validation."
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http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1109/IEEESTD.2012.6204026


Verification 
 “ensuring that the computer program of the 

computerized model and its implementation 
are correct” (Sargent, 1998) 

 Potential verification tasks: 
 Trace intermediate simulation output 
 Test with a known/simplified case and statistically 

compare results 
 Use animations 
 Structured walk-throughs 
 Dynamic testing (incl. extreme values) 
 Reproducibility 
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Validation 
 “substantiation that a computerized model 

within its domain of applicability possesses a 
satisfactory range of accuracy consistent with 
the intended application of the model” 
(Schlesinger et al. 1979) 

 Possible validation tasks 
 Uses real-world experimental data 
 Sensitivity analysis 
 Graphs and confidence intervals 
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Approaches to validation 

Sargent, 1998 

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Sargent, Robert G. "Verification and Validation of Simulation Models." In Proceedings
of the 30th conference on Winter Simulation, pp. 121-30. IEEE Computer Society Press, 1998.
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Possible validation output 

  Key concept: data 
can support or 
refute hypotheses 
of validity, non-
validity for a 
particular purpose 

Sargent, 1998 

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Sargent, Robert G. "Verification and Validation of Simulation Models." In Proceedings
of the 30th conference on Winter Simulation, pp. 121-30. IEEE Computer Society Press, 1998.
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Uncertainties  

 Aleatory: inherent variation in a 
quantity that can be quantified via a 
probability density distribution 

 Epistemic: uncertainty due to lack of 
knowledge 

 Sometimes combined 
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Uncertainty quantification  

 Roy and Oberkampf outline a method 
for VV&UQ that propagates relevant 
uncertainties 
 

 Will talk even more about this in 
uncertainty unit! 
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Oreskes: Verification, validation, and 
Confirmation of numerical models 

 Numerical models can’t be verified 
(by definition), because they aren’t 
closed systems 
 Input parameters aren’t completely 

known 
 Continuum mechanics: loss of info at 

scale < averaging 
 Observation and measurement of 

variables have inferences, assumptions 
 Nonuniqueness/underdetermination 
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Validation 

 =legitimacy (keep this in mind next 
class); hasn’t been nullified 

 Used interchangeably with verification 
(wrong!), or to imply that model is 
accurate representation of reality 
(wrong again!) 

 Actually, “validation” as commonly 
used demonstrates consistency within 
system or between systems 
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Numerical models 

 “Verification” of numerical solutions: 
doesn’t imply realism (“bench-marking”: 
reference to known standard) 

 Earth sciences inverse problem: dependent 
known, independent unknown 
 “Calibration”, “Tuning”, “Empirical adequacy” 

 Past history is no guarantee of future 
performance! 
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Confirmation 

 Fallacy of “affirming the consequent” 
 Numerical models are highly complex 

scientific hypothesis, which cannot 
ever be certain 

 Must use other kinds of observations; 
verification impossible! 

 Confirmation can support probability 
of model being true 
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Policy: what now (Oreskes)? 

 Need neutral language for evaluating 
model performance (relative, not 
absolute) 

 Primary value of models is heuristic 
 Models are most useful to challenge 

existing formulations, rather than 
validate/verify 
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Responses: Sterman, Rykiel  

 Sterman: not limited to earth 
sciences/complex models! 
Responsibility of model consumers 

 Rykiel: definitions and semantics? 
 Discussion question: Do you think it’s 

just semantics or is the distinction 
between verification, validation and 
confirmation helpful? 
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More Discussion Questions 

 How does model formulation change 
when considering policy application? 

 How does policy analysis change 
when considering model results? 
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Problem Set #1 

 Reflect on understanding of models 
by non-technical experts 

 Practice V&V on a simple model 
 Identify V&V in your own experience 
 And share with others: examples of 

V&V? 
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