Integrating Models and Policymaking

Travis Franck 5 March 2013

About Climate Interactive

Climate Interactive's Mission

• <u>Goal:</u> Improve timely, policy relevant analysis for negotiators, NGOs, and the public as they tackle climate and energy systems

- Stay apolitical, not get into partisanship

- <u>How</u>: Climate Interactive focuses on providing the best trusted, vetted, free, and open tools
 - While we do some analysis upon request, our goal is to empower others to do independent analysis easily, quickly, and in a scientifically rigorous manner

Our cutting-edge tools help people **see what works** to address the biggest challenges facing our lives on Earth.

Climate Interactive Provides

- C-ROADS (Climate Rapid Overview and Decision Support)
- En-ROADS (Energy Rapid Overview and Decision Support)
- Climate Pathways iOS application/mobile
- C-Learn (web-hosted sim based on C-ROADS)
- World Climate (in-person negotiation exercise/war game)
- Kenya Pastoralist Drought model (climate adaptation and resiliency)
- Water-Energy Nexus simulator [proposed]
- ClimateScoreboard.org
- Climate Momentum (Flash-based online simulator)
- Firm-level Electrical Utility model carbon tax
- Process facilitation skills

Climate Interactive Project Partners

Logos © Respective copyright holders. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Reach 2°C?

- What will the temperature be in 2100 if:
 - the US reduces 30% below 2005 by 2050
 - the EU reduce 60% below 1990 by 2040
 - China reduces carbon intensity by 60% by 2030
 - and the rest of world continues as projected?

C-ROADS Motivation: Difficulty Comparing Proposals and Estimating Aggregate Impact

- "Currently, in the UNFCCC negotiation process, the concrete environmental consequences of the various positions are not clear to all of us. There is a dangerous void of understanding of the short and long term impacts of the espoused ...unwillingness to act on behalf of the Parties."
 - Christiana Figueres, former UNFCCC negotiator for Costa Rica, now Executive Secretary of the UNFCCC, 2009
- "...delegates [in Bonn] complained that their heads were spinning as they were trying to understand the science and assumptions underlying the increasing number of proposals tabled for Annex I countries' emission reduction ranges. "They all seem to use different base years and assumptions...: how can we make any sense of them?" commented one negotiator."
 - Press Report, ENB, 2009
 - http://www.iisd.ca/vol12/enb12403e.html

C-ROADS Simulator

Climate Rapid Overview and Decision Support

C-ROADS Model Structure

Carbon Cycle and Radiative Balance

- CO₂
- CH_4 , N_2O
- PFCs, HFCs,
 SF₆ etc.
- Aerosols, Black carbon
- Carbon & heat transfer between surface & deep ocean

© McGraw-Hill/Irwin. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Sterman, John D. Business Dynamics: Systems Thinking and Modeling for a Complex World. *McGraw-Hill/Irwin*, 2000.

C-ROADS Scientific Review Panel

- Dr. Robert Watson Department for Environment, Food and Rural Affairs (DEFRA) and former chair, IPCC -- Panel Chair
- Dr. Eric Beinhocker McKinsey Global Institute
- Dr. Klaus Hasselmann Max-Planck Institut für Meteorologie
- Dr. David Lane London School of Economics
- Dr. Jorgen Randers Norwegian School of Management BI
- Dr. Stephen Schneider Stanford University
- Dr. Bert de Vries Netherlands Environmental Assessment Agency, RIVM

C-ROADS Calibration to AR4 Scenarios

3/11/13

Scientifically rigorous AND useful to decision-makers

Photograph of Robert Watson removed due to copyright restrictions.

Dr. Robert Watson, Past Chair, IPCC

"C-ROADS... This very rapid simulation model reproduces the response properties of state-of- the-art three dimensional climate models very well ... and with sufficient precision to provide useful information for its intended audience."

Photograph is in the public domain.

Senator John Kerry

"I have to tell you — [C-ROADS] works, it is important, and it is already getting broad dissemination, ... I used it!"

U.S. State Department's J. Pershing Presenting to the UN

© UNFCCC. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

C-ROADS Summary

- Rigorous
- Clear users and engaged stakeholders
- Focused on policy questions
- Formulated in language of policy
- Transparent, open
- Approachable
- Real-time, to help build intuition

Energy and Climate System Overview

17

EN-ROADS SIMULATOR

In En-ROADS

- Things take time:
 - Commercialization, permitting, financing, and construction all take time.
 - Non-electrified end uses (e.g., cars and industry) can be electrified, but not instantaneously.
- Success builds success:
 - Costs of energy supplies fall as cumulative experience is gained.
 - Rising market share for the new tech builds familiarity, and broadens the reach of infrastructure, so that success feeds on itself.

• There are constraints:

- Rising costs and scarcity of materials put limits on the pace of growth in new tech.
- Coal, oil, and gas resources are limited.
- Demand and supply are linked:
 - Energy demand falls if energy prices rise, and likewise.

Framing, Modeling, Data, and Project Team

- Sonia Aggarwal, CWF
- Casey Cronin, CWF
- Tom Fiddaman,
 Ventana
- Travis Franck, Cl
- Hal Harvey
- Drew Jones, Cl

- Stephanie McCauley, Cl
- Phil Rice, Cl
- Beth Sawin, Cl
- Lori Siegel, Cl
- John Sterman, MIT
- Clara Vondrich, CWF
- Diana Wright

Funded primarily by:

En-ROADS Energy System Structure

En-ROADS Simulation Structure

En-ROADS Energy Sources and Uses

Why? It takes time for New Tech to grow. There are long delays between R&D and displacement of coal, oil, and gas

Some Prominent IAMs We Seek to Complement

- IGSM dynamic general equilibrium
- MERGE intertemporal optimization
- MiniCAM partial equilibrium, intertemporal optimization
- MESSAGE energy system optimization
- ASF hybrid
- AIM hybrid top-down/bottom-up
- WorldScan general equilibrium
- DEMETER top-down optimization
- ENTICE intertemporal optimization
- MIND hybrid energy/endogenous growth
- RICE intertemporal optimization

We Compare our Future Scenarios to Those of Other Simulations

We Also Compare our Simulation Output

to Historical Data

(in this case, BP analysis and WEO data)

Even more troubling, the gas boom starves the reinforcing learning process for Zero – C energy

Renewables don't get the chance to build up complementary infrastructure

Both Reinforcing loops together

Thank You – Q&A

For more information: www.ClimateInteractive.org

For follow-up, please contact: Travis Franck

On Twitter: ClimateInteract

MIT OpenCourseWare http://ocw.mit.edu

ESD.864 / 12.844J Modeling and Assessment for Policy Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.