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About Climate Interactive



Climate Interactive’s Mission

* Goal: Improve timely, policy relevant analysis for
negotiators, NGOs, and the public as they tackle
climate and energy systems

— Stay apolitical, not get into partisanship

 How: Climate Interactive focuses on providing
the best trusted, vetted, free, and open tools

— While we do some analysis upon request, our goal is
to empower others to do independent analysis easily,
quickly, and in a scientifically rigorous manner
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INTERACTIVE
ﬁ Tools for a thriving future

Our cutting-edge tools help people see
what works to address the biggest
challenges facing our lives on Earth.



Climate Interactive Provides

C-ROADS (Climate Rapid Overview and Decision Support)
En-ROADS (Energy Rapid Overview and Decision Support)
Climate Pathways — iOS application/mobile

C-Learn — (web-hosted sim based on C-ROADS)

World Climate (in-person negotiation exercise/war game)
Kenya Pastoralist Drought model (climate adaptation and resiliency)
Water-Energy Nexus simulator [proposed]
ClimateScoreboard.org

Climate Momentum (Flash-based online simulator)
Firm-level Electrical Utility model — carbon tax

Process facilitation skills

lew.cIimateinteractive.org
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Reach 2°C?

* What will the temperature be in 2100 if:
— the US reduces 30% below 2005 by 2050
— the EU reduce 60% below 1990 by 2040

— China reduces carbon intensity by 60% by
2030

— and the rest of world continues as projected?
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C-ROADS Motivation: Difficulty Comparing
Proposals and Estimating Aggregate Impact

“Currently, in the UNFCCC negotiation process, the concrete
environmental consequences of the various positions are not clear to
all of us. There is a dangerous void of understanding of the short and
long term impacts of the espoused ...unwillingness to act on behalf of the
Parties.”

— Christiana Figueres, former UNFCCC negotiator for Costa Rica, how
Executive Secretary of the UNFCCC, 2009

“...delegates [in Bonn] complained that their heads were spinning as they
were trying to understand the science and assumptions underlying the
increasing number of proposals tabled for Annex | countries’

emission reduction ranges. “They all seem to use different base years
and assumptions...: how can we make any sense of them?”
commented one negotiator.”

— Press Report, ENB, 2009
— |ttp://www.iisd.ca/vol12/enb12403e.html
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C-ROADS Simulator

Climate Rapid Overview and Decision
Support



User Input
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C-ROADS Model Structure
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Scientifically reviewed; Runs easily on a laptop;
Emerges from team out of MIT; Shared with all groups

(e.g., US, EU, China, NGOs);

Open-box: equations and assumptions transparent
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C-ROADS Scientific Review Panel

Dr. Robert Watson - Department for Environment, Food and
Rural Affairs (DEFRA) and former chair, IPCC -- Panel Chair

Dr. Eric Beinhocker - McKinsey Global Institute

Dr. Klaus Hasselmann - Max-Planck Institut fir Meteorologie
Dr. David Lane - London School of Economics

Dr. Jorgen Randers - Norwegian School of Management Bl
Dr. Stephen Schneider - Stanford University

Dr. Bert de Vries - Netherlands Environmental Assessment
Agency, RIVM

Mww.climateinteractive.org
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C-ROADS Calibration to AR4 Scenarios
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Courtesy of the Intergovernmental Panel on Climate Change.
Source: [Climate Change 2007: The Physical Science Basis.
Summary for Policy Makers. Figure SPM.5. Page 14.

3/11/13 I/\/ww.climateinteractive.org


www.climateinteracLve.org	�
http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm

Scientifically rigorous AND
useful to decision-makers

Photograph of kobert Watson removed due to copyright restrictions.

Photograph is in the public domain.

Dr. Robert Watson,

Past Chair, IPCC Senator John Kerry
“C-ROADS... This very rapid “I have to tell you — [C-ROADS]
simulation model reproduces the works, it is important, and it is

response properties of state-of- the-art already getting broad
three dimensional climate models very dissemination, ... | used it!”
well ... and with sufficient precision to

provide useful information for its

intended audience."
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U.S. State Department’s J.
Pershing Presenting to the UN
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C-ROADS Summary

Rigorous
Clear users and engaged stakeholders
Focused on policy questions

Formulated in language of policy
Transparent, open
Approachable

Real-time, to help build intuition



Energy and Climate System Overview
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EN-ROADS SIMULATOR



In En-ROADS

Things take time:

— Commercialization, permitting, financing, and construction all take
time.

— Non-electrified end uses (e.g., cars and industry) can be electrified, but
not instantaneously.

Success builds success:

— Costs of energy supplies fall as cumulative experience is gained.

— Rising market share for the new tech builds familiarity, and broadens
the reach of infrastructure, so that success feeds on itself.

There are constraints:

— Rising costs and scarcity of materials put limits on the pace of growth
in new tech.

— Coal, oil, and gas resources are limited.

Demand and supply are linked:

— Energy demand falls if energy prices rise, and likewise.



Framing, Modeling, Data,
and Project Team

Sonia Aggarwal, CWF
Casey Cronin, CWF

Tom Fiddaman,
Ventana

Travis Franck, Cl
Hal Harvey
Drew Jones, Cl

Funded primarily by:

Stephanie McCauley, Cl
Phil Rice, CI

Beth Sawin, ClI

Lori Siegel, Cl

John Sterman, MIT
Clara Vondrich, CWF
Diana Wright

od ClimateWorks
FOUNDATION
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En-ROADS Energy System
Structure



En-ROADS Simulation Structure

Economy
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*  Materials
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* Energy poverty
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En-ROADS Energy Sources and Uses
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Why? It takes time for New Tech to grow. There are long
delays between R&D and displacement of coal, oil, and gas

R&D success Commercuallza‘uon
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Some Prominent IAMs We Seek to
Complement

IGSM — dynamic general equilibrium
MERGE — intertemporal optimization
MiniCAM — partial equilibrium, intertemporal
optimization

MESSAGE — energy system optimization
ASF — hybrid

AIM — hybrid top-down/bottom-up
WorldScan — general equilibrium

DEMETER — top-down optimization

ENTICE — intertemporal optimization

MIND — hybrid energy/endogenous growth
RICE — intertemporal optimization

Source: AR4 WG3 Technical Summary
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GtonsCO2/Year

We Compare our Future Scenarios to
Those of Other Simulations

CO2 FF Comparisons to EMF and EIA
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We Also Compare our Simulation Output
to Historical Data
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Even more troubling, the gas boom starves the
reinforcing learning process for Zero — C energy

Relative
attractiveness
of renewables

Relative price of

renewables
Percent of new C b
capacity met by R1 - Learning
renewables
Installations of Progress

renewables S ¥ down learning

curve
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Renewables don’t get the chance to build up
complementary infrastructure

Relative
attractiveness of
renewables ‘\
@
Percent of new R - Network Complementary
capacity met by infrastructure and
renewables resources

\ Installations of /
renewables
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Both Reinforcing loops together

Relative
attractlveness

of renewables
Relative price of
O renewables
R1 - Learning

Perce.nt of new Complementary
capacity met by infrastructure

renewables and resources

\ Ry
Installations of Progress

renewables S Y down learning

curve
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Thank You — Q&A

For more information:
www.Climatelnteractive.org

For follow-up, please contact:

Travis Franck

On Twitter: Climatelnteract

INWW.cIimateinteractive.org
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