Banach-Tarski: Preliminaries

1 The Theorem

Banach-Tarski Theorem It is possible to decompose a ball into a finite number of pieces and reassemble the pieces (without changing their size or shape) so as to get two balls, each of the same size as the original.

1.1 Warm-Up Case 1: A Line

It is possible to decompose $[0, \infty) - \{1\}$ into two distinct parts, and reassemble the parts (without changing their size or shape) so as to get back $[0, \infty)$.

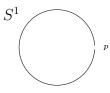
• Decompose $[0, \infty) - \{1\}$ into: (i) $\{2, 3, 4, \dots\}$ and (ii) everything else.

• Translate $\{2, 3, 4, \dots\}$ one unit to the left.

1

1.2 Warm-Up Case 2: A Circle

It is possible to decompose $S^1 - \{p\}$ into two distinct parts, and reassemble the parts (without changing their size or shape) so as to get back S^1 .



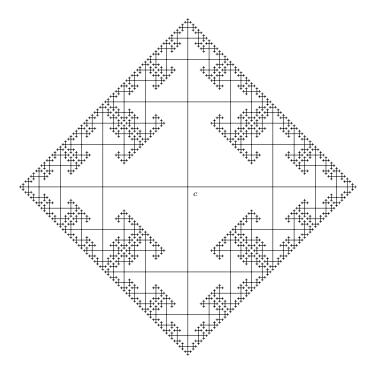
- Decompose $S^1 \{p\}$ into: (i) B and (ii) everything else.
- Rotate *B* one unit counter-clockwise.

 $B = \left\{ x \in S^1 : x \text{ is } n \text{ units clockwise from } p \ (n \in \mathbb{Z}^+) \right\}$

The first six members of B.

1.3 Warm-Up Case 3: The Cayley Graph

It is possible to decompose (the set of endpoints of) the Cayley $Graph^1$ into four distinct parts, and reassemble the parts (albeit changing their size) so as to get back *two copies* of the same size as the original.



• Decompose C^e into quadrants: L^e, R^e, U^e, D^e .

¹A Cayley Path is a finite sequence of steps starting from c, where no step follows its inverse. The Cayley Graph C is the set of Cayley Paths. X^e is the set of endpoints of Cayley paths in X.

- Make first copy by expanding R^e and translating left to meet L^e .
- Make second copy by expanding U^e and translating down to meet D^e .

1.4 A more abstract description of the procedure

Notation: if X is a set of Cayley Paths, let \overleftarrow{X} be the set that results from eliminating the first step from each of the Cayley Paths in X.

By the definition of Cayley Paths:

$$(\alpha) \ C = \overleftarrow{R} \cup L$$

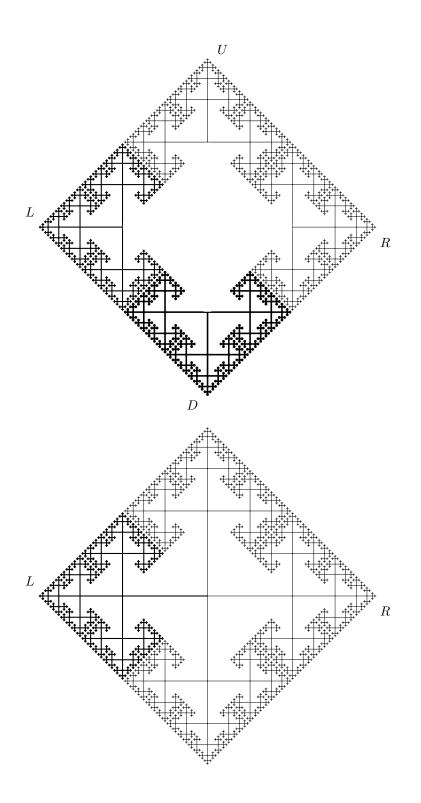
$$(\beta) \ C = \stackrel{\leftarrow}{D} \cup U$$

Since every Cayley Path has a unique endpoint, (α) and (β) entail:

$$(\alpha') \quad C^e = \left(\overleftarrow{R}\right)^e \cup L^e$$
$$(\beta') \quad C^e = \left(\overleftarrow{D}\right)^e \cup U^e$$

On our two-dimensional interoperation of the Cayley Graph, this delivers the intended result because:

- 1. C^e is decomposed into U^e , D^e , L^e and R^e (ignoring the central vertex)
- 2. One can get from R^e to $\left(\stackrel{\leftarrow}{R}\right)^e$, and from D^e to $\left(\stackrel{\leftarrow}{D}\right)^e$, by performing a translation together with an expansion.



24.118 Paradox and Infinity Spring 2019

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.