
Non-Computable Functions (part 2) 

1 The Busy Beaver Function ( 
k, if M yields output k on an empty input

• Productivity(M) = 
0, otherwise 

the productivity of the most productive (one-symbol) • BB(n) = 
Turing Machine with n states or fewer. 

2 BB(n) is not Turing-computable 

• Assume for reductio: Turing Machine MBB computes BB(n). 

• Construct Turing Machine M I , which behaves as follows on an empty 
input: 

Step 1: Print a sequence of k ones, for a certain k (specified below). 

Result: k. 

Step 2: Duplicate your string of ones. 

Result: 2k. 

Step 3 Apply BB to your string of ones (using MBB). 

Result: BB(2k). 

Step 4 Add one to your string of ones. 

Result: BB(2k) + 1. 

• Let k = b + c + d 

b = the number of states used in Step 2 (to duplicate) 

c = the number of states used in Step 3 (to apply BB) 

d = the number of states used in Step 4 (to add one) 

Note: since a Turing Machine can output k using k states, 

M I = k + b + c + d = 2k 
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• MBB is impossible: 

– At Stage 3, it produces as long a sequence of ones as a machine 
with 2k states could possibly produce. 

– But (as noted above) M I = 2k. 

– So at Stage 3, it produces as long a sequence of ones as it itself 
could possibly produce. 

– So at Stage 4, it produces a longer string of ones than it itself 
could possibly produce. 

• So MH isn’t computable after all. 

3 The Universal Turing Machine 

There is a Universal Turing Machine, MU , which does the following: 

• if the mth Turing Machine halts given input n, leaving the tape in 
configuration p, then MU halts given input hm, ni leaving the tape in 
configuration p. 

• if the mth Turing Machine never halts given input n, then MU never 
halts given input hm, ni. 

4 The Fundamental Theorem 

The reason Turing Machines are so valuable is that it is possible to prove the 
following theorem: 

Fundamental Theorem of Turing Machines A function from natural num-
bers to natural numbers is Turing-computable if and only if it can be 
computed by an ordinary computer, assuming unlimited memory and 
running time. 

• One shows that every Turing-computable function is computable by 
an ordinary computer (given unlimited memory and running time) by 
showing that one can program an ordinary computer to simulate any 
given Turing Machine. 
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• One shows that every function computable by an ordinary computer 
(given unlimited memory and running time) is Turing-computable by 
showing that one can find a Turing Machine that simulates any given 
ordinary computer. 

5 Church-Turing 

Computer scientists tend to think that something stronger than the Funda-
mental Theorem is true: 

Church-Turing Thesis A function is Turing-computable if and only if it 
can be computed algorithmically. 

For a problem to be solvable algorithmically is for it to be possible to 
specify a finite list of instructions for solving the problem such that: 

1. Following the instructions is guaranteed to yield a solution to the prob-
lem, in a finite amount of time. 

2. The instructions are specified in such a way that carrying them out 
requires no ingenuity of any kind: they can be followed mechanistically. 

3. No special resources are required to carry out the instructions: they 
could in principle be carried out by a machine built from transistors. 

4. No special physical conditions are required for the computation to suc-
ceed (no need for faster-than-light travel, special solutions to Einstein’s 
equations, etc). 
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