Question 1

Here is the truth-table. Same conventions as usual.

			(C)			\sim	(C	\equiv	\sim	A)
T	T	F	Т	T	T	T	Т	F	F	T
T	F	F	F T	T	T	F	F T F	T	F	T
F	T	F	T	T	F	F	T	T	T	F
F	F	T	F	F	F	T	F	F	T	F
		2	0	1	0	3	0	2	1	0

As you can see, there are no lines in which the premise is true and the conclusion false — the only line in which the premise is true is the last one, and on that line the conclusion is true too. So this argument is truth-functionally valid.

Question 2

All of these are proved by providing derivations in SD. I do so below.

Part (a)

\mathbf{Part}	(b)

1	$(A \supset B) \supset \sim B$	А
2		$A/{\sim}I$
3		$A/\supset I$
4	B	2 R
5	$A \supset B$	3-4, \supset I
6	$\sim B$	1,5 ⊃E
7	B	2 R
8	$\sim B$	2-8 ${\sim}\mathrm{I}$

Part (c)

1	$F \supset (G \lor H)$	А
2	$\sim (\sim F \lor H)$	А
3	$\sim G$	А
4	Н	$A/{\sim}I$
5	$\sim F \lor H$	$4 \lor I$
6	$\sim (\sim F \lor H)$	2 R
7	$\sim H$	4-6 ${\sim}\mathrm{I}$

Question 3 (5.3E 12(b))

Let 'A' = 'The recipe calls for flavouring'; 'B' = 'The recipe calls for eggs'; 'C' = 'The recipe is a recipe for tapicca.'

The relevant set of sentences is {'($\sim A \lor \sim B$) $\supset \sim C$ ', ' $B \supset (C \& \sim A)$ ', 'B'}.

The below derivation shows that this set is inconsistent in SD.

1	$(\sim A \lor \sim B) \supset \sim C$	А
2	$B \supset (C\& \sim A)$	А
3	В	А
4	$C\&\sim A$	$2{,}3\supset\!\mathrm{E}$
5	$\sim A$	4 &E
6	$\sim A \lor \sim B$	$5 \vee I$
7	$\sim C$	1,6 ⊃E
8	C	4 &E

Question 4 $(5.3E \ 13(a))$

This derivation rule allows one to derive something false from something true. To see this: let $\mathbf{P} = A$, $\mathbf{Q} = B$, and consider the truth-value assignment that assigns false to A and true to B. Under that assignment, ' $A \vee B$ ' is true, but 'B' is false.

That's bad — the only derivation rules we want are ones that guarantee that the sentence you derive is true, given that the sentences you started with are true.

Question 5 $(5.3E \ 13(e))$

Because, in SD, you can derive any conclusion from the negation of theorem.

Why is that? Suppose we have a derivation in SD with the negation of some theorem **P** as an assumption on line *i*. As **P** is a theorem, we can derive it in this derivation; say we do so on line *j*. Then, starting at line k > max(i, j), we can construct a sub-derivation of the following form:

$$\begin{array}{c|cccc} k & & & \sim \mathbf{Q} & & \mathrm{A/\sim E} \\ k+1 & & \mathbf{P} & \mathrm{j} \ \mathbf{R} \\ k+2 & & \sim \mathbf{P} & \mathrm{i} \ \mathbf{R} \\ k+3 & & \mathbf{Q} & & k-k+1 \sim \mathrm{E} \end{array}$$

One can do this for any value of \mathbf{Q} . So, one can derive any sentence from the negation of a theorem, in SD.

Question 6

I like this one.

1	$\sim ((A \supset B) \lor (B \supset A))$	$A/{\sim}E$
2		$A/{\sim}I$
3		$A/\supset I$
4		2 R
5	$B \supset A$	$3-4 \supset I$
6	$(A \supset B) \lor (B \supset A)$	$5 \vee I$
7	$\sim ((A \supset B) \lor (B \supset A))$	1 R
8	$\sim A$	$2\text{-}7 \sim \text{I}$
9		$A/\supset I$
10	$\sim B$	$A/{\sim}E$
11		9 R
12	$\sim A$	8 R
13	B	10-12 ${\sim}\mathrm{E}$
14	$A \supset B$	9-13 ⊃I
15	$(A \supset B) \lor (B \supset A)$	$14 \lor I$
16	$\sim ((A \supset B) \lor (B \supset A))$	1 R
17	$(A \supset B) \lor (B \supset A)$	1-16 ${\sim}{\rm E}$
	,	

Question 7

Consider an SD derivation and sentences \mathbf{P}, \mathbf{Q} of SL such that $\lceil \mathbf{P} \lor \mathbf{Q} \rceil$ appears on line *i* of the derivation, to the right of *m* scope-lines, and $\lceil \sim \mathbf{P} \rceil$ appears on line *j* of the derivation, to the right of *n* scope lines. Starting at row k > max(i, j), and to the right of max(m, n) - 1 scope lines, one can construct a sub-derivation of the following form:

k	P	$A/\lor E$
k+1	$\sim \mathbf{Q}$	A~E
k+2	P	$k \; \mathrm{R}$
k+3	$\sim \mathbf{P}$	j R
k+4	Q	$k + 1 \text{-} k + 3 \sim \text{E}$
k+5	\mathbf{Q}	$A/\lor E$
k+6	Q	k+5 R
k+7	\mathbf{Q}	$i, k-k+4, k+5-k+6 \lor \mathbf{E}$

Using this construction, one can always derive \mathbf{Q} , from $\lceil \mathbf{P} \lor \mathbf{Q} \rceil$ and $\lceil \sim \mathbf{P} \rceil$, in SD. So anything we can derive in SD^{*} we can derive in SD.

MIT OpenCourseWare http://ocw.mit.edu

24.241 Logic I Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.