Problem Set 4: Answers Damien Rochford

In most of these proofs, when things have got a little complicated, I have
numbered the steps I’'m taking in the hope that this makes things clearer. You
aren’t required to do this when you answer, but I think it’s probably a good
idea — it helps you get clear on what, exactly, you are doing, and it helps me
understand what you are doing (if I can’t follow your proof, that’s bad).

Section 5.3E, Question 14

In what follows, I will refer to the following sentence:
e I'FPin SD if and only if T = P.

as ‘S&C’ (short for ‘Soundness and Completeness’ — you’ll see why I use this
name in the near future).

Part (a)

Let o be an argument of SL such that the set of assumptions that begin a is
I’ and the conclusion of «a is P (I'm using ‘a’ so you don’t confuse it with a
sentence letter of SL, but you can use whatever you like).

1. « is valid in SD iff there is an SD derivation that has the members of I'
as primary assumptions and P in the scope of those assumptions only (by
definition of ‘valid in SD’).

2. There is an SD derivation that has the members of I' as primary assump-
tions and P in the scope of those assumptions only iff I' H P in SD (by
definition of ‘F’).

3. THPin SDiff T =P (S&C).

4. T |= P iff there is no truth-value assignment such that every member of T’
is true and P is false (by definition of ‘|=’).

5. There is no truth-value assignment such that every member of I' is true
and P is false iff « is truth-functionally valid (by definition of ‘truth-
functionally valid’).

So, assuming S&C, an argument of SL is valid in SD if and only if the
argument is truth-functionally valid.
Q.E.D.

Part (b)

1. A sentence P of SL is a theorem in SD iff ) F P in SD (by definition of
theoremhood).

2. 0P in SDiff § = P (by S&C).



3. 0 = P iff there is no truth-value-assignment that makes every member of
() true and P false (by definition of ‘).

4. There is no truth-value-assignment that makes every member of () true
and P false iff there is no truth-value assignment that makes P false (as
every truth-value assignment makes every member of §) true).

5. There is no truth-value assignment that makes P false iff P is truth-
functionally true (definition of ‘truth-functionally true’).

So, assuming S&C, a sentence P of SL is a theorem in SD if and only if P
is truth-functionally true.

Q.E.D.
Part (c)

1. Sentences P and Q of SL are equivalent in SD iff {P} F Q in SD and
{Q} F P in SD (definition of ‘equivalent in SD’).

2.PFQinSDand QFPin SDiff P = Q and Q = P (by S&C).

3. P = Q and Q = P iff there is no truth-value assignment such that P is
true and Q is false, and vice-versa. (by definition of ‘).

4. There is no truth-value assignment such that P is true and Q is false, and
vice-versa, iff P and Q are truth-functionally equivalent (by definition of
‘truth-functionally equivalent’).

So, assuming S&C, sentences P and Q of SL are equivalent in SD if and
only if P and Q are truth-functionally equivalent.
Q.E.D.

Section 6.1E, Question 1
Part (b)

To show:

CrLAIM: Every sentence of SL that contains no binary connectives is truth-functionally
indeterminate.

CrAaM follows from the following. . .
BaAsis CLAUSE: Every atomic sentence of SL is truth-functionally indeterminate.

INDUCTIVE STEP: If every sentence of SL containing (a) no binary connectives and (b) n
or fewer negations is truth-functionally indeterminate, then so is every
sentence of SL containing no binary connectives and n + 1 negations.



...as every sentence of SL that contains no binary connectives is a sentence
of SL that contains no binary connectives and n negations, for some natural
number 7.

The proof of BAsis CLAUSE is immediate — every atomic sentence of SL
is such that there is a truth-value assignment that makes it true and a truth-
value assignment that makes it false, so every atomic sentence of SL is truth-
functionally indeterminate. It remains to prove INDUCTIVE STEP.

Proof of Inductive Step:

1. Suppose every sentence P of SL containing (a) no binary connectives and
(b) n or fewer negations is truth-functionally indeterminate (i.e., suppose
the antecedent of INDUCTIVE STEP).

2. Then for all such P, there exists a truth-value assignment that make P
true and a truth-value assignments that makes P false.

3. So, by the definition of ‘~’  there is truth-value assignment that makes
T~ P7 false and a truth-value assignment that make "~ P true, for all
such P.

4. But every sentence of SL containing no binary connectives and n + 1
negations is of the form "~ P for some such P.

5. So for every sentence of SL containing no binary connectives and n + 1
negations, there is truth-value assignment that makes it true and a truth-
value assignment that makes it false.

6. So every sentence of SL containing no binary connectives and n + 1 nega-
tions is truth-functionally indeterminate.

So, if every sentence of SL containing (a) no binary connectives and (b) n
or fewer negations is truth-functionally indeterminate, then so is every sentence
of SL containing no binary connectives and n 4+ 1 negations.

Q.E.D.

Part (e)

Where P is a sentence of SL and Q is a sentential component of P, let [P](Q1//Q)
be a sentence that is the result of replacing at least one occurrence of Q in P
with the sentence Q.

To show:

Cramv: If Q and Q; are truth-functionally equivalent, then P and [P](Q1//Q)
are truth-functionally equivalent.

Clearly, CLAIM follows from the following. . .

BAsis CLAUSE: CLAIM is true when P is atomic.



INDUCTIVE STEP: If CLAIM is true for all P containing n or fewer connectives, it is true for
all P containing n + 1 connectives.

...as every sentence of SL contains n connectives, for some natural number n.

Proof of Basis Clause:

1. [P](Q1//P) is just Q.

2. So if Qg is truth-functionally equivalent to P, then obviously [P](Q1//P)
is truth-funcitonally equivalent to P.

3. But when P is atomic, it’s only sentential component is P.

4. So, for all sentential components Q of P, if Q and Q; are truth-functionally
equivalent, then P and [P](Q;//Q) are truth-functionally equivalent,
when P is atomic.

So CLAIM is true when P is atomic.
Q.E.D.

Proof of Inductive Step: Every sentence of SL containing n 4+ 1 connec-
tives is either of the form "~ P77, for some P containing n connectives, or is of
the form P - R, where P, R contain n or fewer connectives (and ‘-’ is a variable
that ranges over binary connectives of SL). I prove INDUCTIVE STEP for each
case in turn.

Case 1: Consider a sentence of SL of the form "~ P, where P is a sentence
containing n connectives. Every sentential component Q of "~ P is either

(a) T~ P7itself, or
(b) is a sentential component of P.

I prove each sub-case in turn.

Sub-case (a): When Q is "~ PTitself, ["~ P7|(Q1//Q) is truth-funcitonally
equivalent to "~ P, for Q; truth-functionally equivalent to Q, by the same
argument as in the proof of BAsiS CLAUSE.

Sub-case (b):

1. Suppose Q is a sentential component of P.

2. Suppose, also, that P and [P](Q1//Q) are truth-functionally equivalent
when Q; truth-functionally equivalent to Q (i.e., suppose the antecedent
of INDUCTIVE STEP for the case of P).

3. Then "~ P7and "~ ([P](Q1//Q))™ are truth-functionally equivalent (by
the definition of ‘~’).

4. And "~ ([P](Q1//Q))" is identical to [T~ P7)(Q1//Q), when Q is a
sentential component of P.



5. So, if P and [P](Q1//Q) are truth-functionally equivalent, then "~ P™ is
truth-functionally equivalent to ["~ P7(Q1//Q), for Q truth-functionally
equivalent to Q, when Q is a sentential component of P.

So, if CLAIM is true for a sentence P containing n connectives, it is true for
T~ P7. That concludes the proof for Case 1.

Case 2: Consider a sentence of SL of the form P - R, where P, R are sen-
tences containing n or fewer connectives. Every sentential component of P - R
is either

(a) P-R itself,
(b) a sentential component of P or a sentential component of R (or both).

I prove each sub-case in turn.
Sub-case (a): The proof here is the same as the proof of Basis CLAUSE

and sub-case (a) of Case 1, mutatis-mutandis.
Sub-case (b):

1. Suppose Q a sentential component of P or R or both.

2. Suppose, also, that P and [P](Q1//Q) are truth-functionally equivalent,
and R and [R](Q:1//Q) are truth-functionally equivalent, when Q; is
truth-functionally equivalent to Q (i.e., suppose the antecedent of INDUC-
TIVE STEP for the cases of P and R).

3. Then P - R is truth-functionally equivalent to [P](Q1//Q) - [R](Q1//Q)
(by the relevant binary-connective’s defintion).

4. And [P](Q1//Q) - [R](Q1//Q) is identical to [P - R](Q1//Q), when Q is

a sentential component of P or R.

5. So, if P and [P](Q1//Q) are truth-functionally equivalent, and R and
[R](Q1//Q) are truth-funcitonally equivalent, then P - R is truth-functionally
equivalent to [P - R](Q1//Q), for Q; truth-functionally equivalent to Q,
when Q is a sentential component of P or R.

So, if CLAIM is true for sentences P, R containing n or fewer connectives, it
is true for P - R.
That concludes the proof for Case 2.

So that concludes the proof for INDUCTIVE STEP.
Q.E.D.
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