In most of these proofs, when things have got a little complicated, I have numbered the steps I'm taking in the hope that this makes things clearer. You aren't required to do this when you answer, but I think it's probably a good idea — it helps you get clear on what, exactly, you are doing, and it helps me understand what you are doing (if I can't follow your proof, that's bad).

Section 5.3E, Question 14

In what follows, I will refer to the following sentence:

• $\Gamma \vdash \mathbf{P}$ in *SD* if and only if $\Gamma \models \mathbf{P}$.

as 'S&C' (short for 'Soundness and Completeness' — you'll see why I use this name in the near future).

Part (a)

Let α be an argument of SL such that the set of assumptions that begin α is Γ and the conclusion of α is **P** (I'm using ' α ' so you don't confuse it with a sentence letter of SL, but you can use whatever you like).

- 1. α is valid in SD iff there is an SD derivation that has the members of Γ as primary assumptions and **P** in the scope of those assumptions only (by definition of 'valid in SD').
- 2. There is an SD derivation that has the members of Γ as primary assumptions and **P** in the scope of those assumptions only iff $\Gamma \vdash \mathbf{P}$ in SD (by definition of ' \vdash ').
- 3. $\Gamma \vdash \mathbf{P}$ in *SD* iff $\Gamma \models \mathbf{P}$ (S&C).
- 4. $\Gamma \models \mathbf{P}$ iff there is no truth-value assignment such that every member of Γ is true and \mathbf{P} is false (by definition of ' \models ').
- 5. There is no truth-value assignment such that every member of Γ is true and **P** is false iff α is truth-functionally valid (by definition of 'truthfunctionally valid').

So, assuming S&C, an argument of SL is valid in SD if and only if the argument is truth-functionally valid.

Q.E.D.

Part (b)

- 1. A sentence **P** of *SL* is a theorem in *SD* iff $\emptyset \vdash \mathbf{P}$ in *SD* (by definition of theoremhood).
- 2. $\emptyset \vdash \mathbf{P}$ in *SD* iff $\emptyset \models \mathbf{P}$ (by S&C).

- 3. $\emptyset \models \mathbf{P}$ iff there is no truth-value-assignment that makes every member of \emptyset true and \mathbf{P} false (by definition of ' \models ').
- 4. There is no truth-value-assignment that makes every member of \emptyset true and **P** false iff there is no truth-value assignment that makes **P** false (as every truth-value assignment makes every member of \emptyset true).
- 5. There is no truth-value assignment that makes \mathbf{P} false iff \mathbf{P} is truth-functionally true (definition of 'truth-functionally true').

So, assuming S&C, a sentence ${\bf P}$ of SL is a theorem in SD if and only if ${\bf P}$ is truth-functionally true.

Q.E.D.

Part (c)

- 1. Sentences \mathbf{P} and \mathbf{Q} of SL are equivalent in SD iff $\{\mathbf{P}\} \vdash \mathbf{Q}$ in SD and $\{\mathbf{Q}\} \vdash \mathbf{P}$ in SD (definition of 'equivalent in SD').
- 2. $\mathbf{P} \vdash \mathbf{Q}$ in *SD* and $\mathbf{Q} \vdash \mathbf{P}$ in *SD* iff $\mathbf{P} \models \mathbf{Q}$ and $\mathbf{Q} \models \mathbf{P}$ (by S&C).
- 3. $\mathbf{P} \models \mathbf{Q}$ and $\mathbf{Q} \models \mathbf{P}$ iff there is no truth-value assignment such that \mathbf{P} is true and \mathbf{Q} is false, and vice-versa. (by definition of ' \models ').
- 4. There is no truth-value assignment such that **P** is true and **Q** is false, and vice-versa, iff **P** and **Q** are truth-functionally equivalent (by definition of 'truth-functionally equivalent').

So, assuming S&C, sentences \mathbf{P} and \mathbf{Q} of SL are equivalent in SD if and only if \mathbf{P} and \mathbf{Q} are truth-functionally equivalent. Q.E.D.

Section 6.1E, Question 1

Part (b)

To show:

CLAIM: Every sentence of *SL* that contains no binary connectives is truth-functionally indeterminate.

CLAIM follows from the following...

BASIS CLAUSE: Every atomic sentence of SL is truth-functionally indeterminate.

INDUCTIVE STEP: If every sentence of SL containing (a) no binary connectives and (b) n or fewer negations is truth-functionally indeterminate, then so is every sentence of SL containing no binary connectives and n + 1 negations.

... as every sentence of SL that contains no binary connectives is a sentence of SL that contains no binary connectives and n negations, for some natural number n.

The proof of BASIS CLAUSE is immediate — every atomic sentence of SL is such that there is a truth-value assignment that makes it true and a truth-value assignment that makes it false, so every atomic sentence of SL is truth-functionally indeterminate. It remains to prove INDUCTIVE STEP.

Proof of Inductive Step:

- 1. Suppose every sentence \mathbf{P} of SL containing (a) no binary connectives and (b) n or fewer negations is truth-functionally indeterminate (i.e., suppose the antecedent of INDUCTIVE STEP).
- 2. Then for all such **P**, there exists a truth-value assignment that make **P** true and a truth-value assignments that makes **P** false.
- 3. So, by the definition of '~', there is truth-value assignment that makes $\lceil \sim \mathbf{P} \rceil$ false and a truth-value assignment that make $\lceil \sim \mathbf{P} \rceil$ true, for all such \mathbf{P} .
- 4. But every sentence of SL containing no binary connectives and n + 1 negations is of the form $\lceil \sim \mathbf{P} \rceil$, for some such \mathbf{P} .
- 5. So for every sentence of SL containing no binary connectives and n + 1 negations, there is truth-value assignment that makes it true and a truth-value assignment that makes it false.
- 6. So every sentence of SL containing no binary connectives and n+1 negations is truth-functionally indeterminate.

So, if every sentence of SL containing (a) no binary connectives and (b) n or fewer negations is truth-functionally indeterminate, then so is every sentence of SL containing no binary connectives and n + 1 negations.

Q.E.D.

Part (e)

Where **P** is a sentence of *SL* and **Q** is a sentential component of **P**, let $[\mathbf{P}](\mathbf{Q}_1//\mathbf{Q})$ be a sentence that is the result of replacing at least one occurrence of **Q** in **P** with the sentence \mathbf{Q}_1 .

To show:

CLAIM: If Q and Q₁ are truth-functionally equivalent, then P and $[P](Q_1//Q)$ are truth-functionally equivalent.

Clearly, CLAIM follows from the following...

BASIS CLAUSE: CLAIM is true when **P** is atomic.

- INDUCTIVE STEP: If CLAIM is true for all \mathbf{P} containing n or fewer connectives, it is true for all \mathbf{P} containing n + 1 connectives.
 - \ldots as every sentence of SL contains n connectives, for some natural number n.

Proof of Basis Clause:

- 1. $[\mathbf{P}](\mathbf{Q}_1//\mathbf{P})$ is just \mathbf{Q}_1 .
- 2. So if \mathbf{Q}_1 is truth-functionally equivalent to \mathbf{P} , then obviously $[\mathbf{P}](\mathbf{Q}_1//\mathbf{P})$ is truth-functionally equivalent to \mathbf{P} .
- 3. But when **P** is atomic, it's only sentential component is **P**.
- 4. So, for all sentential components \mathbf{Q} of \mathbf{P} , if \mathbf{Q} and \mathbf{Q}_1 are truth-functionally equivalent, then \mathbf{P} and $[\mathbf{P}](\mathbf{Q}_1//\mathbf{Q})$ are truth-functionally equivalent, when \mathbf{P} is atomic.

So CLAIM is true when \mathbf{P} is atomic. Q.E.D.

Proof of Inductive Step: Every sentence of SL containing n + 1 connectives is either of the form $\lceil \sim \mathbf{P} \rceil$, for some \mathbf{P} containing n connectives, or is of the form $\mathbf{P} \cdot \mathbf{R}$, where \mathbf{P}, \mathbf{R} contain n or fewer connectives (and '·' is a variable that ranges over binary connectives of SL). I prove INDUCTIVE STEP for each case in turn.

Case 1: Consider a sentence of SL of the form $\lceil \sim \mathbf{P} \rceil$, where \mathbf{P} is a sentence containing *n* connectives. Every sentential component \mathbf{Q} of $\lceil \sim \mathbf{P} \rceil$ is either

- (a) $\neg \sim \mathbf{P} \neg$ itself, or
- (b) is a sentential component of **P**.

I prove each sub-case in turn.

Sub-case (a): When \mathbf{Q} is $\lceil \sim \mathbf{P} \rceil$ itself, $\lceil \sim \mathbf{P} \rceil (\mathbf{Q}_1 / / \mathbf{Q})$ is truth-functionally equivalent to $\lceil \sim \mathbf{P} \rceil$, for \mathbf{Q}_1 truth-functionally equivalent to \mathbf{Q} , by the same argument as in the proof of BASIS CLAUSE.

Sub-case (b):

- 1. Suppose \mathbf{Q} is a sentential component of \mathbf{P} .
- 2. Suppose, also, that \mathbf{P} and $[\mathbf{P}](\mathbf{Q}_1//\mathbf{Q})$ are truth-functionally equivalent when \mathbf{Q}_1 truth-functionally equivalent to \mathbf{Q} (i.e., suppose the antecedent of INDUCTIVE STEP for the case of \mathbf{P}).
- 3. Then $\lceil \sim \mathbf{P} \rceil$ and $\lceil \sim ([\mathbf{P}](\mathbf{Q}_1//\mathbf{Q})) \rceil$ are truth-functionally equivalent (by the definition of '~').
- 4. And $\lceil \sim ([\mathbf{P}](\mathbf{Q}_1//\mathbf{Q})) \rceil$ is identical to $[\lceil \sim \mathbf{P} \rceil](\mathbf{Q}_1//\mathbf{Q})$, when \mathbf{Q} is a sentential component of \mathbf{P} .

5. So, if **P** and $[\mathbf{P}](\mathbf{Q}_1//\mathbf{Q})$ are truth-functionally equivalent, then $\neg \sim \mathbf{P} \neg$ is truth-functionally equivalent to $[\neg \sim \mathbf{P} \neg](\mathbf{Q}_1//\mathbf{Q})$, for \mathbf{Q}_1 truth-functionally equivalent to \mathbf{Q} , when \mathbf{Q} is a sentential component of \mathbf{P} .

So, if CLAIM is true for a sentence **P** containing *n* connectives, it is true for $\neg \sim \mathbf{P} \neg$. That concludes the proof for Case 1.

Case 2: Consider a sentence of SL of the form $\mathbf{P} \cdot \mathbf{R}$, where \mathbf{P}, \mathbf{R} are sentences containing n or fewer connectives. Every sentential component of $\mathbf{P} \cdot \mathbf{R}$ is either

- (a) $\mathbf{P} \cdot \mathbf{R}$ itself,
- (b) a sentential component of \mathbf{P} or a sentential component of \mathbf{R} (or both).
- I prove each sub-case in turn.

Sub-case (a): The proof here is the same as the proof of BASIS CLAUSE and sub-case (a) of Case 1, *mutatis-mutandis*.

Sub-case (b):

- 1. Suppose \mathbf{Q} a sentential component of \mathbf{P} or \mathbf{R} or both.
- 2. Suppose, also, that \mathbf{P} and $[\mathbf{P}](\mathbf{Q}_1//\mathbf{Q})$ are truth-functionally equivalent, and \mathbf{R} and $[\mathbf{R}](\mathbf{Q}_1//\mathbf{Q})$ are truth-functionally equivalent, when \mathbf{Q}_1 is truth-functionally equivalent to \mathbf{Q} (i.e., suppose the antecedent of INDUC-TIVE STEP for the cases of \mathbf{P} and \mathbf{R}).
- 3. Then $\mathbf{P} \cdot \mathbf{R}$ is truth-functionally equivalent to $[\mathbf{P}](\mathbf{Q}_1//\mathbf{Q}) \cdot [\mathbf{R}](\mathbf{Q}_1//\mathbf{Q})$ (by the relevant binary-connective's definition).
- 4. And $[\mathbf{P}](\mathbf{Q}_1//\mathbf{Q}) \cdot [\mathbf{R}](\mathbf{Q}_1//\mathbf{Q})$ is identical to $[\mathbf{P} \cdot \mathbf{R}](\mathbf{Q}_1//\mathbf{Q})$, when \mathbf{Q} is a sentential component of \mathbf{P} or \mathbf{R} .
- 5. So, if **P** and $[\mathbf{P}](\mathbf{Q}_1//\mathbf{Q})$ are truth-functionally equivalent, and **R** and $[\mathbf{R}](\mathbf{Q}_1//\mathbf{Q})$ are truth-functionally equivalent, then $\mathbf{P} \cdot \mathbf{R}$ is truth-functionally equivalent to $[\mathbf{P} \cdot \mathbf{R}](\mathbf{Q}_1//\mathbf{Q})$, for \mathbf{Q}_1 truth-functionally equivalent to \mathbf{Q} , when **Q** is a sentential component of **P** or **R**.

So, if CLAIM is true for sentences \mathbf{P}, \mathbf{R} containing *n* or fewer connectives, it is true for $\mathbf{P} \cdot \mathbf{R}$.

That concludes the proof for Case 2.

So that concludes the proof for INDUCTIVE STEP. Q.E.D.

MIT OpenCourseWare http://ocw.mit.edu

24.241 Logic I Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.