
Problem Set 5: Answers	 Damien Rochford 

Question 1 

The trickiest things about this question is just stating what you want to prove 
in the right way. 

Let Q1, Q2, . . . , Qn be atomic sentences. Let v(R) be the truth value as­
signed to R by truth-value assignment v. Let �(. . . (P1&P2)& . . . &Pn)� be the 
sentence such that Pi = Qi iff v(Qi) = T , Pi = �∼ Qi� iff v(Qi) = F . 

Showing that a sentence constructed in accordance with the characteristic 
sentence algorithm in TLB is, indeed, a characteristic sentence for the row of the 
truth-function schema in question is equivalent to showing that a truth-value 
assignment makes �(. . . (P1&P2)& . . . &Pn)� true if and only if that truth-value 
assignment assigns truth-values to the relevant atomic sentences in the way 
that v does. (You should think of v as the truth-value assignment that assigns 
truth-values in the way indicated by the row of the truth-function schema in 
question.) Another way of saying this: u(�(. . . (P1&P2)& . . . &Pn)�) = T iff 
u(Qi) = v(Qi), for all i. 

So what we want to show is that u(�(. . . (P1&P2)& . . . &Pn)�) = T iff 
u(Qi) = v(Qi), for all i. 

Here’s a proof: 

1. By the fact in 6.1E (1d), u(�(. . . (P1&P2)& . . . &Pn)�) = T iff u(P1) = 
u(P2) = . . . = u(Pn) = T . 

2.	 u(P1) = u(P2) = . . . = u(Pn) = T iff both 

(a) for all i such that Pi = Qi, u(Pi) = T , and 

(b) for all i such that Pi = �∼ Qi�, u(Pi) = T 

(as all i are either such that Pi = Qi, or such that Pi = �∼ Qi�). 

3. Now, 2(a) is true iff for all Pi = Qi, u(Qi) = T , obviously, and 2(b) is 
true iff for all i such that Pi = �∼ Qi�, u(Qi) = F (by the definition of 
‘ ∼’). 

4. So u(P1) = u(P2) = . . . = u(Pn) = T iff both 

(a) for all Pi = Qi, u(Qi) = T 

(b) for all i such that Pi = �∼ Qi�, u(Qi) = F . 

(by 2, 3). 

5. But for all	 i such that Pi = Qi, v(Q1) = T , and for all i such that 
Pi = �∼ Qi�, v(Qi) = F (by the definition of v above). 

6. So u(P1) = u(P2) = . . . = u(Pn) = T iff, u(Qi) = v(Qi), for all i (from 
4, 5). 

7. So u(�(. . . (P1&P2)& . . . &Pn)�) = T iff u(Qi) = v(Qi) (from 1, 6). 

Q.E.D. 



Question 2 

Let Γ be the set of atomic sentences. 
Let L1 be the set of all sentences P such that P ∈ L1 iff 

(a) P ∈ Γ, or 

(b) P is of one of the following forms: 

(i) �∼ Q�; 

(ii) �Q&R�; 

(iii) �Q ∨ R�; 

where Q, R ∈ L1. 

Let L2 be the set of all sentences P such that 

(a) P ∈ Γ, or 

(b) P is of the form �Q ↓ R�, where Q, R ∈ L2. 

We know that { ‘ ∼’,‘&’,‘∨ ’ } is TF-complete, so we know that for every truth-
function, there is a sentence in L1 that expresses that truth-function. If, for 
every sentence P ∈ L1, there is a sentence in L2 that expresses the same truth 
function as P, then it follows that for every truth-function, there is a sentence 
in L2 that expresses that truth-function, from which it follows that { ‘ ’ } is 
TF-complete. 

↓ 

So, all that remains to be done to prove that { ‘ ’ } is TF-complete is to prove ↓
that for every sentence P ∈ L1, there is a sentence in L2 that expresses the same 
truth function as P.


I prove this by mathematical induction.


Basis Clause: For every atomic sentence P ∈ L1 there is a sentence in L2 that expresses 
the same truth function as P. 

Inductive Step: If, for every sentence P ∈ L1 containing n or fewer connectives there is a 
sentence in L2 that expresses the same truth-function as P, then for every 
sentence Q ∈ L1 containing n + 1 connectives there is a sentence in L2 

that expresses the same truth-function as L2. 

Clearly, it follows from Basis Clause and Inductive Step that for every 
sentence P ∈ L1, there is a sentence in L2 that expresses the same truth function 
as P. 

The proof of Basis Clause is immediate; for every atomic sentence P ∈ L1 

there is a sentence in L2 that expresses the same truth function as P — namely, 
P. (Besides, every atomic sentence expresses the same truth-function: the one 
that maps true to true and false to false.) 

Now for Inductive Step. Consider an arbitrary sentence Q ∈ L1 contain­
ing n + 1 connectives. Q is either of the form 
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(a) �∼ R�, or 

(b) �R&S�, or 

(c) �R ∨ S�.


I prove Inductive Step for each case in turn.


Case (a): 

1. Suppose that, for every sentence P ∈ L1 containing n or fewer connectives 
there is a sentence in L2 that expresses the same truth-function as P (i.e., 
suppose the antecedent of Inductive Step). 

2. Then there is a sentence in L2 that expresses the same truth-function as 
R (as R contains n connectives). Call that sentence in L2 T. 

3. I claim that �T ↓ T� expresses the same truth-funciton as �∼ R�. Here’s 
a sub-proof of my claim: 

(i) A truth-value assignment makes �∼ R� true iff it makes R false (by 
defintion of ‘∼’). 

(ii) A truth-value assignment makes R false iff it makes T false (by 2). 
(iii) A truth-value assignment makes T false iff it makes �T T� true ↓

(by the definition of ‘ ’. I leave the verification of this as an exercise 
for the reader). 

↓

(iv) So a truth-value assignment makes �∼ R� true iff it makes �T ↓ T� 
true. 

(v) So �∼ R� expresses the same truth-function as �T ↓ T�. 

4.	 �T ↓ T� ∈ L2 (by the definition of L2). 

5. So there exists a sentence of L2 that expresses the same truth-function as 
�∼ R�. 

6. So, assuming the antecedent of	 Inductive Step, for every sentence of 
the form �∼ R�, where R has n connectives, there is a sentence in L2 

that expresses the same truth-function as �∼ R�. 

That proves Inductive Step for case (a). 

Case (b): 

1. Suppose that, for every sentence P ∈ L1 containing n or fewer connectives 
there is a sentence in L2 that expresses the same truth-function as P (i.e., 
suppose the antecedent of Inductive Step). 

2. Then there is a sentence in L2 that expresses the same truth-function as 
R and a sentence of L2 that expresses the same truth-function as S (as 
both R and S contain n or fewer connectives). Call those sentence in L2 

T and U, respectively. 
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3. I claim that �(T T) (U U)� expresses the same truth-function as ↓ ↓ ↓
�R&S�. Here’s a sub-proof of my claim: 

(i) A truth-value assignment makes	 �R&S� true iff it makes both R 
and S true (by defintion of ‘&’). 

(ii) A truth-value assignment makes both R and S true iff it makes both 
T and U true and it (by 2). 

(iii) A truth-value assignment makes both	 T and U true iff it makes 
�(T T) (U U)� true (by the definition of ‘ ’. I leave the ↓ ↓ ↓	 ↓
verification of this as an exercise for the reader). 

(iv) So a truth-value assignment makes �R&S� true iff it makes �(T 
T) (U U)� true. 

↓ 
↓	 ↓ 

(v) So �R&S� expresses the same truth-function as �(T T) (U 
U)�.	

↓ ↓ ↓ 

4.	 �(T ↓ T) ↓ (U ↓ U)� ∈ L2 (by the definition of L2). 

5. So there exists a sentence in L2 that expresses the same truth-function as 
�R&S�. 

6. So, assuming the antecedent of Inductive Step, for every sentence of the 
form �R&S�, where R, S have n or fewer connectives, there is a sentence 
in L2 that expresses the same truth-function as �R&S�. 

That proves Inductive Step for case (b). 

Case (c): 

1. Suppose that, for every sentence P ∈ L1 containing n or fewer connectives 
there is a sentence in L2 that expresses the same truth-function as P (i.e., 
suppose the antecedent of Inductive Step). 

2. Then there is a sentence in L2 that expresses the same truth-function as 
R and a sentence of L2 that expresses the same truth-function as S (as 
both R and S contain n or fewer connectives). Call those sentence in L2 

T and U, respectively. 

3. I claim that �(T U) (T U)� expresses the same truth-function as ↓ ↓ ↓
�R ∨ S�. Here’s a sub-proof of my claim: 

(i) A truth-value assignment makes �R ∨ S� true iff it does not make 
both R and S false (by defintion of ‘∨’). 

(ii) A truth-value assignment does not make both R and S false iff it 
does not make both T and U false and it (by 2). 

(iii) A truth-value assignment does not makes both T and U false iff it 
makes �(T U) (T U)� true (by the definition of ‘ ’. I leave the ↓	 ↓ ↓ ↓
verification of this as an exercise for the reader). 
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(iv) So a truth-value assignment makes �R ∨ S� true iff it makes �(T ↓
U) (T U)� true. ↓ ↓ 

(v) So �R ∨ S� expresses the same truth-function as �(T U) (T 
U)�. 

↓ ↓ ↓ 

4. �(T ↓ U) ↓ (T ↓ U)� ∈ L2 (by the definition of L2). 

5. So there exists a sentence in L2 that expresses the same truth-function as 
�R&S�. 

6. So, assuming the antecedent of Inductive Step, for every sentence of the 
form �R ∨ S�, where R, S have n or fewer connectives, there is a sentence 
in L2 that expresses the same truth-function as �R ∨ S�. 

That proves Inductive Step for case (c). 
And that finishes the proof of Inductive Step 
And that finishes the proof that for every sentence P ∈ L1, there is a sentence 

in L2 that expresses the same truth function as P. 
And that finishes the proof that { ‘ ’ } is TF-complete. 
Q.E.D. 

↓ 

Question 3 

There are, in fact, two ways to use the proof that SD is sound to prove that 
SD� is sound. One way is to show that if Γ � P in SD�, then Γ � P in SD, so, 
by the soundness of SD, if Γ � P in SD�, then Γ |= P — i.e., SD� is sound. 

I’m going to do it the other way, which is the way I think the question 
prompt is nudging you. The other way goes as follows. 

The goal is to prove that SD� is sound; i.e., that. . . 

SD� Soundness: If Γ � P in SD�, then Γ |= P 

. . . is true. We are going to prove it by mathematical induction. Let Pk be the 
kth sentence in an SD� derivation, and let Γk be the set of assumptions open 
on the kth line of that SD� derivation. Clearly, SD� Soundness follows from 
the following: 

Basis Clause: Γ1 |= P1. 

Inductive Step: If Γk+1 � Pk+1 in SD�, then Γk+1 |= Pk+1. 

The proof of Base Case is exactly the same as the proof for the analogous 
base case in TLB on page 260, which is part of the proof of the soundness 
of SD. The proof of Inductive Step is exactly the same as the proof of the 
analogous inductive step on pages 260-264 of TLB, which is also part of the proof 
of soundness of SD, except you need to add a case for Backwards Conditional 
Introduction. 

One way for that case to go is as follows: 
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Case 13: Pk+1 is justified by Backwards Conditional Introduction: 

h ∼ R 

j ∼ Q 

k + 1 R ⊃ Q (= Pk+1) h-j, B⊃I 

1. By exactly the same proof as in case 8, we know that Γk+1 |= 
�∼ R ⊃ ∼ Q�. 

2. So there is no truth-value assignment such that every member 
of Γk+1 is true and �∼ R ⊃ ∼ Q� is false (by the definition of 
‘ |=’). 

3. So there is no truth-value assignment such that every member 
of Γk+1 is true and �∼ R� is true and �∼ Q� is false (by the 
definition of ‘⊃’). 

4. So there is no truth-value assignment such that every member 
of Γk+1 is true and R is false and Q is true (by the definition 
of ‘∼’). 

5. So there is no truth-value assignment such that every member 
of Γk+1 is true and Q ⊃ R is false (again by the definition of 
‘ ⊃’). 

6. So Γk+1 |= Q ⊃ R. 

So Inductive Step is true in the case when Pk+1 is justified by Backwards 
Conditional Introduction. So, by that and the stuff in the proof of the soudness 
of SD, Inductive Step is true. So, by that and Base Case, SD� is sound. 

Q.E.D. 
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