Semantics

Question 1

To prove:

• '~ $(\exists x)(Fx \& Gx)$ ' is true on I.

Proof:

- 1. '~ $(\exists x)(Fx\&Gx)$ ' is true on *I* iff every variable assignment *d* for *I* satisfies '~ $(\exists x)(Fx\&Gx)$ ' (by the definition of truth).
- 2. Let d_0 be an arbitrary variable assignment for I. d_0 satisfies ' $\sim (\exists x)(Fx\&Gx)$ ' iff d_0 does not satisfy ' $(\exists x)(Fx\&Gx)$ ' (by clause 3 of the definition of satisfaction).
- 3. d_0 does not satisfy ' $(\exists x)(Fx \& Gx)$ ' iff there is no $\mathbf{u} \in UD$ such that $d_0[\mathbf{u}/x']$ satisfies '(Fx& Gx)' (by clause 9 of the definition of satisfaction).
- 4. There is no $\mathbf{u} \in UD$ such that $d_0[\mathbf{u}/x']$ satisfies '(Fx & Gx)' iff there is no $\mathbf{u} \in UD$ such that $d_0[\mathbf{u}/x']$ satisfies both 'Fx' and 'Gx' (by clause 4 of the definition of satisfaction).
- 5. There is no $\mathbf{u} \in UD$ such that $d_0[\mathbf{u}/\mathbf{x}']$ satisfies both 'Fx' and 'Gx' iff there is no $\mathbf{u} \in UD$ such that $\langle d_0[\mathbf{u}/\mathbf{x}'](\mathbf{x}') \rangle \in I(\mathbf{F}')$ and $\langle d_0[\mathbf{u}/\mathbf{x}'](\mathbf{x}') \rangle \in$ $I(\mathbf{G}')$ (by clause 2 in the definition of satisfaction (and the definition of denotation)).
- 6. $\langle a \rangle \notin I(`F')$ and $\langle b \rangle \notin I(`G')$, so there is no $\mathbf{u} \in UD$ such that $\langle d_0[\mathbf{u}/`x'](`x') \rangle \in I(`F')$ and $\langle d_0[\mathbf{u}/`x'](`x') \rangle \in I(`G')$.
- 7. So d_0 satisfies '~ $(\exists x)(Fx \& Gx)$ ' (by 2-6).
- 8. d_0 was arbitrary, so every variable assignment d for I satisfies ' $\sim (\exists x)(Fx\&Gx)$ ' (by 7).
- 9. So '~ $(\exists x)(Fx \& Gx)$ ' is true on I (by 1, 8).

Q.E.D.

Question 2

To prove:

• $(\forall x)(Fx \equiv Gx)$ is false on *I*.

Proof:

1. $(\forall x)(Fx \equiv Gx)$ ' is false on *I* iff no variable assignment *d* for *I* satisfies $(\forall x)(Fx \equiv Gx)$ ' (by the definition of falsehood).

- 2. Let d_0 be an arbitrary variable assignment for I. d_0 does not satisfy $(\forall x)(Fx \equiv Gx)'$ iff for for some $\mathbf{u} \in UD$, $d_0[\mathbf{u}/x']$ does not satisfy $(Fx \equiv Gx)'$ (by clause 8 of the definition of satisfaction).
- 3. There is some $\mathbf{u} \in UD$ such that $d_0[\mathbf{u}/`x']$ does not satisfy $(Fx \equiv Gx)'$ iff there is some $\mathbf{u} \in UD$ such that either $d_0[\mathbf{u}/`x']$ satisfies Fx' and not Gx', or $d_0[\mathbf{u}/`x']$ satisfies Gx' and not Fx' (by clause 7 of the definition of satisfaction).
- 4. There is some $\mathbf{u} \in UD$ such that $d_0[\mathbf{u}/\mathbf{x}']$ satisfies 'Fx' and not 'Gx' iff there is some $\mathbf{u} \in UD$ such that $\langle d_0[\mathbf{u}/\mathbf{x}'](\mathbf{x}') \rangle \in I(\mathbf{F}')$ and $\langle d_0[\mathbf{u}/\mathbf{x}'](\mathbf{x}') \rangle \notin I(\mathbf{G}')$ (by clause 2 of the definition of satisfaction (and the definition of denotation)).
- 5. *a* is such that $\langle d_0[a/x'](x')\rangle \in I(F')$ and $\langle d_0[a/x'](x')\rangle \notin I(G')$.
- 6. So there is some $\mathbf{u} \in UD$ such that $\langle d_0[\mathbf{u}/\mathbf{x}'](\mathbf{x}') \rangle \in I(\mathbf{F}')$ and $\langle d_0[\mathbf{u}/\mathbf{x}'](\mathbf{x}') \rangle \notin I(\mathbf{G}')$ (by 5).
- 7. So there is some $\mathbf{u} \in UD$ such that either $d_0[\mathbf{u}/x']$ satisfies 'Fx' and not 'Gx' (by 4, 6).
- 8. So there is some $\mathbf{u} \in UD$ such that either $d_0[\mathbf{u}/x']$ satisfies 'Fx' and not 'Gx', or $d_0[\mathbf{u}/x']$ satisfies 'Gx' and not 'Fx' (by 7).
- 9. So d_0 does not satisfy $(\forall x)(Fx \equiv Gx)$ (by 2, 3, 8).
- 10. d_0 was arbitrary, so no variable assignment d for I satisfies $(\forall x)(Fx \equiv Gx)'$ (by 9).
- 11. So $(\forall x)(Fx \equiv Gx)$ is false on I (by 1, 10).

Q.E.D.

Syntax (10.1E)

Question 1

Part (a)

Part (d)

1	$(\exists x)(Fx \& Gx)$	А
2	Fa & Ga	$A/\exists E$
3	Fa	$2,\&\mathrm{E}$
4	Ga	$2,\&\mathrm{E}$
5	$(\exists y)Fy$	$3,\exists \mathrm{I}$
6	$(\exists w)Gw$	$4,\exists \mathrm{I}$
7	$(\exists y)Fy$	1, 2-5, $\exists E$
8	$(\exists w)Gw$	1, 2-6, $\exists E$
9	$(\exists y)Fy \& (\exists w)Gw$	7, 8, & I

Part (j)

1	$(\forall x)(Fx \supset Lx)$	А
2	$(\exists y)Fy$	А
3	Fa	$A/\exists E$
4	$Fa \supset La$	$1,\forall E$
5	La	3, 4, $\supset E$
6	$(\exists x)Lx$	5, $\exists I$
7	$(\exists x)Lx$	2, 3-6, $\exists E$

Question 2

Part (a)

The mistake is in line 3; this is supposed to be an application of universal elimination, but the sentence to which the rule was applied is not a universally quantified sentence; it is, rather, a conditional. Universal elimination can only be applied to a universally quantified sentence.

Part (b)

The mistake is in line 5. One cannot apply universal introduction to a sentence that contains a constant that is in an open assumption. The sentence on line four contains such a constant — viz., the 'k'. (The sentence on line 1 is the open assumption containing 'k'.) So the application of universal introduction to line 4 to get line 5 is disallowed.

Part (c)

The important mistake is the one on line 3: the incorrect application of existential elimination. Existential elimination brings things out from sub-derivations; you can't use existential elimination to go from a sentence on a particular scope line directly to a sentence on the same scope line.

There is also a typo on line 4; the ' \exists ' shouldn't be there. But this is not the important (or, I gather, intended) mistake.

MIT OpenCourseWare http://ocw.mit.edu

24.241 Logic I Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.