Subject 24.242. Logic II. Answers to the last homework assignmetn

Recall that a *normal modal system* for the modal sentential calculus is a set of formulas Γ that meets the following conditions:

- (TC) Every tautological consequence of Γ is in Γ .
- (Nec) If ϕ is in Γ , so in $\Box \phi$.
- (K) All instances of the schema $(\Box(\phi \rightarrow \psi) \rightarrow (\Box\phi \rightarrow \Box\psi))$ are in Γ .
- A binary relation R on a set W is symmetric iff, for every v and w in W, if Rwv then Rvw. Let KB be the smallest normal modal system that contains all instances of the schema

 (◊□φ → φ)

Show that a sentence is in KB if and only if it's valid for the class of frames $\langle W, R, I \rangle$, with R symmetric.

First, we show that (B) is valid for the class of symmetric frames. Suppose that R is symmetric and that $\Diamond \Box \varphi$ is true at the world w in the frame <W,R,I>. Then there is a world v accessible from w in which $\Box \varphi$ is true. So φ is true in every world accessible from v. In particular, φ is true in w, since, by symmetry, w is accessible from v. So $(\Diamond \Box \varphi \rightarrow \varphi)$ is valid in <W,R,I>.

Let Γ be the set of sentences valid for the class of symmetric frames. Γ is a normal modal system that includes (B), and so Γ includes KB. We need to show that, if a sentence ϕ isn't in KB, it isn't in Γ . That is, we need to show that, if ϕ isn't in KB, then there is a symmetric frame in which there is a world in which ϕ is false. We know that the canonical frame for KB contains a world in which ϕ is false; so it will be enough to show that the canonical frame for KB is symmetric.

Suppose that w and v are worlds in the canonical frame for KB and that Rwv. We need to see that Rvw, that is, we need to see that, whenever $\Box \Psi$ is in v, Ψ is in w. Since $\Box \Psi$ is true in v, $\Diamond \Box \Psi$ is true in every world that has access to v; in particular, $\Diamond \Box \Psi$ is true in w. Since $(\Diamond \Box \Psi \rightarrow \Psi)$ is true in w, it follows that Ψ is true in w, and so $\Psi \in w$.

5. Prove de Jongh's theorem that all instances of schema

(4) $(\Box \phi \rightarrow \Box \Box \phi)$ are elements of the smallest normal modal system that includes all instances of the schema: (L) $(\Box(\Box \phi \rightarrow \phi) \rightarrow \Box \phi)$. [Hint: The instance of schema (L) that you'll use is $(\Box(\Box(\phi \land \Box \phi) \rightarrow (\phi \land \Box \phi)) \rightarrow \Box(\phi \land \Box \phi))$.]

1.
$$((\phi \land \Box \phi) \rightarrow \phi)$$
 (TC) 2. $\Box((\phi \land \Box \phi) \rightarrow \phi)$ $(Nec), 1$ 3. $(\Box((\phi \land \Box \phi) \rightarrow \phi) \rightarrow (\Box(\phi \land \Box \phi) \rightarrow \Box \phi))$ (K) 4. $(\Box(\phi \land \Box \phi) \rightarrow \Box \phi)$ $(TC), 2, 3$ 5. $(\phi \rightarrow (\Box(\phi \land \Box \phi) \rightarrow (\phi \land \Box \phi)))$ $(TC), 4$ 6. $\Box(\phi \rightarrow (\Box(\phi \land \Box \phi) \rightarrow (\phi \land \Box \phi)))$ $(Nec), 5$

7.	$(\Box(\varphi \rightarrow (\Box(\varphi \land \Box \varphi) \rightarrow (\varphi \land \Box \varphi))) \rightarrow (\Box \varphi \rightarrow \Box(\varphi)))$	[□(ϕ ∧ □ϕ) → (ϕ ∧ □ϕ)))) (K)
8.	$(\Box \dot{\phi} \rightarrow \Box (\Box (\phi \land \Box \dot{\phi}) \rightarrow (\phi \land \Box \dot{\phi})))$	(TC), 6, 7
9.	$(\Box(\Box(\phi \land \Box\phi) \to (\phi \land \Box\phi)) \to \Box(\phi \land \Box\phi))$	(L)
10.	(□φ →□(φ ∧ □φ))	(TC), 8, 9
11.	((ϕ ∧ □ϕ) → □ϕ)	(TC)
12.	$\Box((\phi \land \Box \phi) \to \Box \phi) $ (Nec)	, 11
13.	$(\Box((\phi \land \Box \phi) \to \Box \phi) \to (\Box(\phi \land \Box \phi) \to \Box \Box \phi))$	(K)
1 4.	(□(ϕ ∧ □ϕ) → □□ϕ)	(TC), 12, 13
15.	(□ φ → □□ φ)	(TC), 10, 14